1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
k0ka [10]
2 years ago
13

A chain link fence should be cut quickly with a

Physics
1 answer:
kumpel [21]2 years ago
7 0

Answer: it should be cut with a chainsaw

Explanation:

You might be interested in
What is the name of the process in which oceanic crust moves apart at mid-ocean ridges due to convention currents in the mantle?
Katena32 [7]
The answer is D seafloor spreading
7 0
2 years ago
(a) Neil A. Armstrong was the first person to walk on the moon. The distance between the earth and the moon is . Find the time i
a_sh-v [17]

Answer:

a)<em> It took 1.28 seconds to Neil Armstrong's voice to reach the Earth via radio waves. </em>

b) <em>The minimum time that will be required for a message from Mars to reach the Earth via radio waves is 192 seconds. </em>

Explanation:

The electromagnetic spectrum is the distribution of radiation due to the different frequencies at which it radiates and its different intensitie. That radiation is formed by electromagnetic waves, which are transverse waves formed by an electric field and a magnetic field perpendicular to it.

The distribution of the radiation in the electromagnetic spectrum can also be given in wavelengths, but it is more frequent to work with it at frequencies:

  • Gamma rays
  • X-rays
  • Ultraviolet rays
  • Visible region
  • Infrared
  • Microwave
  • Radio waves.

Any radiation that belongs to electromagnetic spectrum has a speed in vacuum of 3x10^{8}m/s.  

<em>a) Find the time it took for his voice to reach the Earth via radio waves.</em>

To know the time that took for Neil Armstrong's voice to reach the Earth via radio waves, the following equation can be used:

c = \frac{d}{t}  (1)

Where v is the speed of light, d is the distance and t is the time.

Notice that t can be isolated from equation 1.

t = \frac{d}{c}  (2)

The distance from the Earth to the Moon is 3.85x10^{8} m, therefore.

t = \frac{3.85x10^{8} m}{3x10^{8}m/s}

t = 1.28s

Hence, it took 1.28 seconds to Neil Armstrong's voice to reach the Earth via radio waves.

<em>b) Determine the minimum time that will be required for a message from Mars to reach the Earth via radio waves.</em>

The distance from the Earth to the Mars at its closest approach is 5.76x10^{10}m, therefore.

t = \frac{5.76x10^{10}m}{3x10^{8}m/s}

t = 192s

Hence, the minimum time that will be required for a message from Mars to reach the Earth via radio waves is 192 seconds.

3 0
3 years ago
Very far from earth (at R- oo), a spacecraft has run out of fuel and its kinetic energy is zero. If only the gravitational force
Margaret [11]

Answer:

Speed of the spacecraft right before the collision: \displaystyle \sqrt{\frac{2\, G\cdot M_\text{e}}{R\text{e}}}.

Assumption: the earth is exactly spherical with a uniform density.

Explanation:

This question could be solved using the conservation of energy.

The mechanical energy of this spacecraft is the sum of:

  • the kinetic energy of this spacecraft, and
  • the (gravitational) potential energy of this spacecraft.

Let m denote the mass of this spacecraft. At a distance of R from the center of the earth (with mass M_\text{e}), the gravitational potential energy (\mathrm{GPE}) of this spacecraft would be:

\displaystyle \text{GPE} = -\frac{G \cdot M_\text{e}\cdot m}{R}.

Initially, R (the denominator of this fraction) is infinitely large. Therefore, the initial value of \mathrm{GPE} will be infinitely close to zero.

On the other hand, the question states that the initial kinetic energy (\rm KE) of this spacecraft is also zero. Therefore, the initial mechanical energy of this spacecraft would be zero.

Right before the collision, the spacecraft would be very close to the surface of the earth. The distance R between the spacecraft and the center of the earth would be approximately equal to R_\text{e}, the radius of the earth.

The \mathrm{GPE} of the spacecraft at that moment would be:

\displaystyle \text{GPE} = -\frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}.

Subtract this value from zero to find the loss in the \rm GPE of this spacecraft:

\begin{aligned}\text{GPE change} &= \text{Initial GPE} - \text{Final GPE} \\ &= 0 - \left(-\frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}\right) = \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}} \end{aligned}

Assume that gravitational pull is the only force on the spacecraft. The size of the loss in the \rm GPE of this spacecraft would be equal to the size of the gain in its \rm KE.

Therefore, right before collision, the \rm KE of this spacecraft would be:

\begin{aligned}& \text{Initial KE} + \text{KE change} \\ &= \text{Initial KE} + (-\text{GPE change}) \\ &= 0 + \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}} \\ &= \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}\end{aligned}.

On the other hand, let v denote the speed of this spacecraft. The following equation that relates v\! and m to \rm KE:

\displaystyle \text{KE} = \frac{1}{2}\, m \cdot v^2.

Rearrange this equation to find an equation for v:

\displaystyle v = \sqrt{\frac{2\, \text{KE}}{m}}.

It is already found that right before the collision, \displaystyle \text{KE} = \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}. Make use of this equation to find v at that moment:

\begin{aligned}v &= \sqrt{\frac{2\, \text{KE}}{m}} \\ &= \sqrt{\frac{2\, G\cdot M_\text{e} \cdot m}{R_\text{e}\cdot m}} = \sqrt{\frac{2\, G\cdot M_\text{e}}{R_\text{e}}}\end{aligned}.

6 0
2 years ago
Two atoms that are isotopes will have a different number of what​
BigorU [14]

Answer:

different number of mass numbers.

Explanation:

isotopes are atoms of the same element having the same atomic number but different mass numbers due to different number of neutrons.

7 0
3 years ago
When a voltage difference is applied to a piece of metal wire, a 5.0 mA current flows through it. If this metal wire is now repl
zheka24 [161]

Answer:

I = 21.13 mA ≈ 21 mA

Explanation:

If

I₁ = 5 mA

L₁ = L₂ = L

V₁ = V₂ = V

ρ₁ = 1.68*10⁻⁸ Ohm-m

ρ₂ = 1.59*10⁻⁸ Ohm-m

D₁ = D

D₂ = 2D

S₁ = 0.25*π*D²

S₂ = 0.25*π*(2*D)² = π*D²

If we apply the equation

R = ρ*L / S

where (using Ohm's Law):

R = V / I

we have

V / I = ρ*L / S

If V and L are the same

V / L =  ρ*I / S

then

(V / L)₁ = (V / L)₂  ⇒     ρ₁*I₁ / S₁ = ρ₂*I₂ / S₂

If

S₁ = 0.25*π*D²   and

S₂ = 0.25*π*(2*D)² = π*D²

we have

ρ₁*I₁ / (0.25*π*D²) = ρ₂*I₂ / (π*D²)

⇒    I₂ = 4*ρ₁*I₁ / ρ₂

⇒     I₂ = 4*1.68*10⁻⁸ Ohm-m*5 mA / 1.59*10⁻⁸ Ohm-m

⇒     I₂ = 21.13 mA

5 0
3 years ago
Other questions:
  • What is the electric potential of a 2.2 µC charge at a distance of 6.3 m from the charge? Recall that Coulomb’s constant is k =
    12·2 answers
  • You take a 3 hour nap on a train traveling 40 miles per hour
    15·2 answers
  • H e l p.. I have no idea what any of this is, what is the first step of the hydrogen fusion process
    10·2 answers
  • Match the bones with their common name.
    5·1 answer
  • Which of the following is an example of the wind slowly causing changes in Earth's landforms?
    13·1 answer
  • Gold has a specific heat of 0.130 J/g*C. If 195 joules of heat are added to 15 grams of gold how much does the temperature of th
    7·1 answer
  • Two airplanes leave an airport at the same time and travel in opposite directions. One plane travels 87 km/h faster than the oth
    7·1 answer
  • The electric current is a
    7·1 answer
  • This table shows the speed of four race horse traveling on a race track in miles per hour which list is in order from the horse
    10·1 answer
  • Two billiard balls move toward each other on a table. The mass of the number three ball, m1, is 5 g with a velocity of 3 m/s. Th
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!