Answer:
The length of the solar day will get shorter.
Explanation:
- The blue planet Earth not only rotates around it's own axis but also rotates around the Sun and everyday it moves a little bit around the axis.
- Since the speed of the Earth's rotation on it's own axis and around the Sun is constant we don't feel the effects of the rotation.We can only feel the motion if the earth changes it's rotation speed.
- If by any means or chance the Earth stopped spinning (stopped rotation) then the atmosphere surrounding the Earth would be in motion and all the Earth's land would be scoured clean.
Answer:
0.20kg-m^2
Explanation:
Let the linear velocity of the rope(=of pulley) is v m/s
Using kinematic equation
=> v = u + at
=>v = 0 + 4.9a
=>v = 4.9a ------------ eq1
By v^2 = u^2 + 2as
=>v^2 = 0 + 2 x v/4.9 x 1.2
=>4.9v^2 - 2.4v = 0
=>v(4.9v - 2.4) = 0
=>v = 2.4/4.9 = 0.49 m/s
Thus by v = r x omega
=>omega = v/r = 0.49/0.02 = 24.49 rad/sec
BY W = F x s = 50 x 1.2 = 60 J
=>KE(rotational) = W = 1/2 x I x omega^2
=>60 = 1/2 x I x (24.49)^2
=>I = 0.20 kg-m^2
Answer:
A. True
Explanation:
When a stone is thrown straight-up, it has an initial velocity which decreases gradually as the stone move to maximum height due to constant acceleration due to gravity acting downward on the stone, at the maximum height the final velocity of the stone is zero. As the stone descends the velocity starts to increase and becomes maximum before it hits the ground.
Height of the motion is given by;

g is acceleration due to gravity which is constant
H is height traveled
u is the speed of throw, which determines the value of height traveled.
Therefore, when the stone is caught at the same height from which it was thrown in the absence of air resistance, the speed of the stone when thrown will be equal to the speed when caught.