Answer:
the value of the final pressure is 0.168 atm
Explanation:
Given the data in the question;
Let p₁ be initial pressure, v₁ be initial volume.
After expansion, p₂ is final pressure and v₂ is final volume.
So using the following equations;
p₁v₁ = nRT
p₂v₂ = nRT
hence, p₁v₁ = p₂v₂
we find p₂
p₂ = p₁v₁ / v₂
given that; initial volume v₁ = 0.175 m³, Initial pressure p₁ = 0.350 atm,
final volume v₂ = 0.365 m³
we substitute
p₂ = ( 0.350 atm × 0.175 m³ ) / 0.365 m³
p₂ = 0.06125 atm-m³ / 0.365 m³
p₂ = 0.168 atm
Therefore, the value of the final pressure is 0.168 atm
Answer:
5900J
Explanation:
Work=Forse*Distance
work = J, Jewls
100*59=5900
Hop this helps and can u think about brainlist
i put a picture on how to find these answers, if u got any more questions im here
Replaces spring 2. the mass of the weight and pulley are unchanged: m=5.8 kg and mp=1.7 kg
Answer: The speed will be 30 m/s .
Explanation:
Given: Initial velocity of the car: u = 0 m/s
Constant Acceleration: a = 5 m/s²
Time: t= 6 seconds
To find: Final velocity(v)
Formula: v = u+at
Substitute values in the formula, we get
v= 0+(5)(6) m/s
⇒ v= 30 m/s
i.e. Final velocity = 30 m/s
Hence, the speed will be 30 m/s .
Answer:
v = 5.15 m/s
Explanation:
At constant velocity, the cable tension will equal the car weight of 984(9.81) = 9,653 N
As the cable tension is less than this value, the car must be accelerating downward.
7730 = 984(9.81 - a)
a = 1.95 m/s²
kinematic equations s = ut + ½at² and v = u + at
-5.00 = u(4.00) + ½(-1.95)4.00²
u = 2.65 m/s the car's initial velocity was upward at 2.65 m/s
v = 2.65 + (-1.95)(4.00)
v = -5.15 m/s