Answer:
A. fluorine, 1.79 moles
Explanation:
Given parameters:
Mass of carbon = 87.7g
Mass of fluorine gas = 136g
Unknown:
The limiting reactant and the maximum amount of moles of carbon tetrafluoride that can be produced = ?
Solution:
Equation of the reaction:
C + 2F₂ → CF₄
let us find the number of the moles the given species;
Number of moles =
C; molar mass = 12;
Number of moles =
= 7.31moles
F; molar mass = 2(19) = 38g/mol
Number of moles =
= 3.58moles
So;
From the give reaction:
1 mole of C requires 2 moles of F₂
7.31 moles of C will then require 2 x 7.31 moles of F₂ = 14.62moles
But we have 3.58 moles of the F₂;
Therefore, the reactant in short supply is F₂ and it is the limiting reactant;
So;
2 moles of F₂ will produce mole of CF₄
3.58 moles of F₂ will then produce
= 1.79moles of CF₄
Answer:
The speed of light is the speed at which light travels. No, an object cannot move at the speed of light.
Explanation:
The speed of light is 186,000 miles per second. An object with mass cannot move at the speed of light since it would take an infinite amount of energy to achieve that velocity, since only massless particles can travel at the speed of light. Also, you would have to factor in air friction, meaning even if an object were to reach such high speeds, it would instantly disintegrate.
An atom gains an electron from another atom. Hence, option B is the correct answer.
<h3>What is an atom?</h3>
An atom is a particle of matter that uniquely defines a chemical element. An atom consists of a central nucleus that is usually surrounded by one or more electrons.
When an atom shares electrons with another atom then it results in the formation of a covalent bond.
Whereas when an atom transfer electrons from one atom to another then it results in the formation of an ionic bond.
When the nucleus of an atom splits then it represents a nuclear fission reaction and energy is released during this process.
Hence, option B is the correct answer.
Learn more about the atom here:
brainly.com/question/1566330
#SPJ1
<u>Answer:</u> The percent composition of hydrogen in the sample is 15.22 %
<u>Explanation:</u>
We are given:
Mass of hydrogen = 7 grams
Mass of nitrogen = 32 grams
Mass of carbon = 7 grams
Total mass of the sample = 7 + 32 + 7 = 46 grams
To calculate the percentage composition of hydrogen in sample, we use the equation:

Mass of sample = 46 g
Mass of hydrogen = 7 g
Putting values in above equation, we get:

Hence, the percent composition of hydrogen in the sample is 15.22 %