Answer:
the mole fraction of Gas B is xB= 0.612 (61.2%)
Explanation:
Assuming ideal gas behaviour of A and B, then
pA*V=nA*R*T
pB*V=nB*R*T
where
V= volume = 10 L
T= temperature= 25°C= 298 K
pA and pB= partial pressures of A and B respectively = 5 atm and 7.89 atm
R= ideal gas constant = 0.082 atm*L/(mol*K)
therefore
nA= (pA*V)/(R*T) = 5 atm* 10 L /(0.082 atm*L/(mol*K) * 298 K) = 2.04 mole
nB= (pB*V)/(R*T) = 7.89 atm* 10 L /(0.082 atm*L/(mol*K) * 298 K) = 3.22 mole
therefore the total number of moles is
n = nA +nB= 2.04 mole + 3.22 mole = 5.26 mole
the mole fraction of Gas B is then
xB= nB/n= 3.22 mole/5.26 mole = 0.612
xB= 0.612
Note
another way to obtain it is through Dalton's law
P=pB*xB , P = pA+pB → xB = pB/(pA+pB) = 7.69 atm/( 5 atm + 7.89 atm) = 0.612
Answer:
are produces are in a month.
Explanation:
Quantity of eggs produced by the chicken in a month = 284 dozens
1 dozen = 12 eggs
Number of eggs in a month:

are produces are in a month.
Answer:
29.575%
Explanation:
Data provided:
Calories taken in daily diet = 2000
Recommended amount of fat = 65 grams
Average number of calories for fat = 9.1 calories / g
Thus,
Number of calories in the diet with average number of calories for fat
= Recommended amount of fat × Average number of calories for fat
= 65 × 9.1
= 591.5 calories
Therefore,
the percentage of calories in his diet supplied = ( 591.5 / 2000 ) × 100
= 29.575%
Answer:
<h3>The answer is option D</h3>
Explanation:
To find the speed given the kinetic energy and mass we use the formula

where
m is the mass
v is the speed
From the question
KE = 15 J
m = 2.3 kg
We have

We have the final answer as
<h3>3.6 m/s</h3>
Hope this helps you
A. The cell will not be able to maintain a stable internal environment.