The volume of H₂ : = 15.2208 L
<h3>Further explanation</h3>
Given
Reaction
2 As (s) + 6 NaOH (aq) → 2 Na₃AsO₃ (s) + 3 H₂ (g)
34.0g of As
Required
The volume of H₂ at STP
Solution
mol As (Ar = 75 g/mol) :
= mass : Ar
= 34 g : 75 g/mol
= 0.453 mol
From the equation, mol ratio As : H₂ = 2 : 3, so mol H₂ :
=3/2 x mol As
=3/2 x 0.453
= 0.6795
At STP, 1 mol = 22.4 L, so :
= 0.6795 x 22.4 L
= 15.2208 L
One mole of a substance contains 6.02 × 10∧23 particles. Thus we first convert 89.2 g to moles. 1 mole of sodium contains 23 g
Hence 89.2 g = 89.2 / 23 g = 3.878 moles
Therefore, 3.878 × 6.02×10∧23 particles= 23.346 × 10∧23 particles
Hence 89.2 g of sodium contains 2.335 ×10∧24 particles
Answer:
Proton and neutrons
Explanation:
they both have a mass of 1 amu or 1 atomic mass
setup 1 : to the right
setup 2 : equilibrium
setup 3 : to the left
<h3>Further explanation</h3>
The reaction quotient (Q) : determine a reaction has reached equilibrium
For reaction :
aA+bB⇔cC+dD
![\tt Q=\dfrac{C]^c[D]^d}{[A]^a[B]^b}](https://tex.z-dn.net/?f=%5Ctt%20Q%3D%5Cdfrac%7BC%5D%5Ec%5BD%5D%5Ed%7D%7B%5BA%5D%5Ea%5BB%5D%5Eb%7D)
Comparing Q with K( the equilibrium constant) :
K is the product of ions in an equilibrium saturated state
Q is the product of the ion ions from the reacting substance
Q <K = solution has not occurred precipitation, the ratio of the products to reactants is less than the ratio at equilibrium. The reaction moved to the right (products)
Q = Ksp = saturated solution, exactly the precipitate will occur, the system at equilibrium
Q> K = sediment solution, the ratio of the products to reactants is greater than the ratio at equilibrium. The reaction moved to the left (reactants)
Keq = 6.16 x 10⁻³
Q for reaction N₂O₄(0) ⇒ 2NO₂(g)
![\tt Q=\dfrac{[NO_2]^2}{[N_2O_4]}](https://tex.z-dn.net/?f=%5Ctt%20Q%3D%5Cdfrac%7B%5BNO_2%5D%5E2%7D%7B%5BN_2O_4%5D%7D)
Setup 1 :

Q<K⇒The reaction moved to the right (products)
Setup 2 :

Q=K⇒the system at equilibrium
Setup 3 :

Q>K⇒The reaction moved to the left (reactants)