Answer:
The partial pressure of argon in the jar is 0.944 kilopascal.
Explanation:
Step 1: Data given
Volume of the jar of air = 25.0 L
Number of moles argon = 0.0104 moles
Temperature = 273 K
Step 2: Calculate the pressure of argon with the ideal gas law
p*V = nRT
p = (nRT)/V
⇒ with n = the number of moles of argon = 0.0104 moles
⇒ with R = the gas constant = 0.0821 L*atm/mol*K
⇒ with T = the temperature = 273 K
⇒ with V = the volume of the jar = 25.0 L
p = (0.0104 * 0.0821 * 273)/25.0
p = 0.00932 atm
1 atm =101.3 kPa
0.00932 atm = 101.3 * 0.00932 = 0.944 kPa
The partial pressure of argon in the jar is 0.944 kilopascal.
D = M/V = 76g / 22ml = 3.4g/ml
Half ~ D = 38g / 11ml = 3.4g/ml
Even if the object you had was cut in half, it’s density would remain the same.
Answer:The molecular formula of the oxide of metal be
. The balanced equation for the reaction is given by:

Explanation:
Let the molecular formula of the oxide of metal be 

Mass of metal product = 1.68 g
Moles of metal X =
1 mol of metal oxide produces 2 moles of metal X.
Then 0.03005 moles of metal X will be produced by:
of metal oxide
Mass of 0.01502 mol of metal oxide = 2.40 g (given)

y = 2.999 ≈ 3
The molecular formula of the oxide of metal be
. The balanced equation for the reaction is given by:

I personally thinks it’s A
Root mean square velocity is the square root of the mean of the squares of speeds of different molecules. From kinetic theory of gas, the formula of root mean square velocity=C
= √
=√
=√
, where, R= Universal gas constant, T= Absolute temperature, P= Pressure, V= Volume of gas, d= Density of gas.
Given, T=273 K, P=1.00 x 10⁻² atm, d=1.24 x 10⁻⁵ g/cm³.
(a) Using the formula
=√
=√(3X1.00X10⁻²)/(1.24X10⁻⁵)=49.18
(b) Molar mass can be determined by using the formula
=√{3RT}{M}
49.18=√
49.18²=√(3X8.314X273)/M
M=
M=1.67 ≅ 2
Molecular mass is 2.
(c) The gas is Helium (He) whose molecular mass is 2.