Answer:
0.26g of NaCl is the maximum mass that could be produced
Explanation:
Based on the reaction:
HCl + NaOH → NaCl + H₂O
<em>Where 1 mol of HCl reacts per mol of NaOH to produce 1 mol of NaCl</em>
<em />
To solve this question we need to find <em>limiting reactant. </em>The moles of limiting reactant = Moles of NaCl produced:
<em>Moles HCl -Molar mass: 36.46g/mol-:</em>
0.365g HCl * (1mol / 36.46g) = 0.010 moles HCl
<em>Moles NaOH -Molar mass: 40g/mol-:</em>
0.18g NaOH * (1mol / 40g) = 0.0045 moles NaOH
As the reaction is 1:1 and moles NaOH < moles HCl, limiting reactant is NaOH and maximum moles produced of NaCl are 0.0045 moles.
The mass of NaCl is:
<em>Mass NaCl -Molar mass: 58.44g/mol-:</em>
0.0045 moles * (58.44g/mol) =
<h3>0.26g of NaCl is the maximum mass that could be produced</h3>
<span>The correct answer is 'freezing point depression'. Colligative properties depend on the concentration of molecules of a solute. Examples of other colligative properties are boiling point elevation or vapour pressure lowering. The salt causes ice on the side walk to melt because it lowers the freezing point. </span>
Isotope- variation of an element
Sixteen- atomic number of oxygen