Answer:
A
Explanation:
Chlorofluorocarbons generally abbreviated as CFCs are a group of organic chemicals used in several household and industrial materials and are responsible for global warming and ozone depletion.
Global warming is the general increase in the atmospheric temperature of the earth continually over the years. It is a direct consequence of climate change which is caused by the continuous release of green house gases into the atmosphere which trap radiated heat from the sun.
Ozone depletion involves anthropogenic activities which lead to decreasing the natural spread of the ozone layer which prevents the direct contact between the sun UV radiation and the earth.
CFCs are implicated in both cases as they are responsible for the two I.e they cause global warming and also deplete the ozone layer. Years back they are basically used in most aerosol cans like perfumes spray, insecticide spray etc. However as a result of the increased knowledge of their dangers, there had been legislations which had cut down on their continuous usage with alternatives being used
C not sure 100 percent but my best guess
Answer:
To increase the yield of H₂ we would use a low temperature.
For an exothermic reaction such as this, decreasing temperature increases the value of K and the amount of products at equilibrium. Low temperature increases the value of K and the amount of products at equilibrium.
Explanation:
Let´s consider the following reaction:
CO(g) + H₂O(g) ⇌ CO₂(g) + H₂(g)
When a system at equilibrium is disturbed, the response of the system is explained by Le Chatelier's Principle: <em>If a system at equilibrium suffers a perturbation (in temperature, pressure, concentration), the system will shift its equilibrium position to counteract such perturbation</em>.
In this case, we have an exothermic reaction (ΔH° < 0). We can imagine heat as one of the products. If we decrease the temperature, the system will try to raise it favoring the forward reaction to release heat and, at the same time, increasing the yield of H₂. By having more products, the value of the equilibrium constant K increases.
there's no question on here