Answer:
865
Step-by-step explanation:
We have that in 95% confidence level the value of z has a value of 1.96. This can be confirmed in the attached image of the normal distribution.
Now we have the following formula:
n = [z / E] ^ 2 * (p * q)
where n is the sample size, which is what we want to calculate, "E" is the error that is 2% or 0.02. "p" is the probability they give us, 5 out of 50, is the same as 1 out of 10, that is 0.1. "q" is the complement of p, that is, 1 - 0.1 = 0.9, that is, the value of q is 0.9.
Replacing these values we are left with:
n = [1.96 / 0.02] ^ 2 * [(0.1) * (0.9)]
n = 864.36
865 by rounding to the largest number.
Answer:
The margin of error for this estimate is of 14.79 yards per game.
Step-by-step explanation:
We have the standard deviation for the sample, which means that the t-distribution is used to solve this question.
T interval
The first step to solve this problem is finding how many degrees of freedom, we have. This is the sample size subtracted by 1. So
df = 20 - 1 = 19
95% confidence interval
Now, we have to find a value of T, which is found looking at the t table, with 19 degrees of freedom(y-axis) and a confidence level of
. So we have T = 2.093
The margin of error is:

In which s is the standard deviation of the sample and n is the size of the sample.
You randomly select 20 games and see that the average yards per game is 273.7 with a standard deviation of 31.64 yards.
This means that 
What is the margin of error for this estimate?



The margin of error for this estimate is of 14.79 yards per game.
27-(7x3)=6
27-21=6 Its 6 your welcome
Answer:
18 bananas cost the same as 12 apples, and 12 apples cost the same as 8 oranges, so 18 bananas cost the same as $8
I think that should be the answer hope that helped. Let me know if it worked :3
Step by step, 118-14=104, you would then divide 104 by 2 giving you 52, 52+14= 66, one piece is 66 inches while the other is 52 inches, adding them together would be 118