Answer:
1/3
Step-by-step explanation:
Answer:
.42n = p
Step-by-step explanation:
We can write ratios to solve
2.52 / 6 = p/n
.42 = p/n
Multiply each side by n
.42n = p
Answer:
, 9.9 ounces of water remaining.
Step-by-step explanation:
<u>Given:</u>
Dylan drank 5.2 ounces of water before soccer practice, and 12.9 ounces after practice.
Before he drank any water, there were 28 ounces of water in the container.
<u>Question asked:</u>
Which expression can be used to find the amount of water remaining?
<u>Solution:</u>
Let
the amount of water remaining.
Total quantity of water in the container = 28 ounces
Before practice, Dylan drank = 5.2 ounces
After practice, Dylan drank = 12.9 ounces
Remaining amount of water = Total quantity of water in the container - Amount of water is drunk before practice - Amount of water is drunk before practice
![x=28-5.2-12.9\\ \\ x=28-18.1\\ \\ x=9.9\ ounces](https://tex.z-dn.net/?f=x%3D28-5.2-12.9%5C%5C%20%5C%5C%20x%3D28-18.1%5C%5C%20%5C%5C%20x%3D9.9%5C%20ounces)
Thus, 9.9 ounces of water remaining in the container.
Solution
- The solution steps are given below:
![\begin{gathered} \text{ Let the original amount be X} \\ \\ \text{ If we want a 28\% raise over the next two years, then it means that the amount will be:} \\ X+\frac{28}{100}X=1.28X \\ \\ \text{ If we want to give them a consistent raise each year, we can compute the scenario as follows:} \\ \text{ Let the percentage be }y \\ \\ X+y\%\text{ of }X=\text{ Salary after first year} \\ \\ (X+y\%\text{ of }X)+y\%\text{ of }(X+y\%\text{ of }X)\text{ = Salary after second year.} \\ \\ \text{ But we already know that the salary after second year is }1.28X \\ \text{ Thus, we can say:} \\ (X+y\%\text{ of }X)+y\%\text{ of }(X+y\%\text{ of }X)=1.28X \\ \\ \text{ Simplifying, we have:} \\ X+\frac{yX}{100}+\frac{y}{100}(X+\frac{yX}{100})=1.28X \\ \\ \text{ Divide through by }X \\ 1+\frac{y}{100}+\frac{y}{100}(1+\frac{y}{100})=1.28 \\ \\ \text{ Subtract 1 from both sides and expand the brackets} \\ \frac{y}{100}+\frac{y}{100}+(\frac{y}{100})^2=1.28-1=0.28 \\ \\ \frac{2y}{100}+(\frac{y}{100})^2=0.28 \\ \\ \text{ Multiply both sides by }100^2 \\ 200y+y^2=2800 \\ \\ \text{ Rewrite, we have:} \\ y^2+200y-2800=0 \\ \\ Solving\text{ the equation using the Quadratic formula, we have that:} \\ y=\frac{-200\pm\sqrt{200^2-4(-2800)}(1)}{2(1)} \\ \\ y=-213.137\text{ or }13.137 \\ \\ \text{ Since the change in salary is an increase, thus, the rate }y\text{ has to be positive.} \\ \text{ Thus, } \\ y=13.137\approx13.14\% \\ \\ \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Ctext%7B%20Let%20the%20original%20amount%20be%20X%7D%20%5C%5C%20%20%5C%5C%20%5Ctext%7B%20If%20we%20want%20a%2028%5C%25%20raise%20over%20the%20next%20two%20years%2C%20then%20it%20means%20that%20the%20amount%20will%20be%3A%7D%20%5C%5C%20X%2B%5Cfrac%7B28%7D%7B100%7DX%3D1.28X%20%5C%5C%20%20%5C%5C%20%5Ctext%7B%20If%20we%20want%20to%20give%20them%20a%20consistent%20raise%20each%20year%2C%20we%20can%20compute%20the%20scenario%20as%20follows%3A%7D%20%5C%5C%20%5Ctext%7B%20Let%20the%20percentage%20be%20%7Dy%20%5C%5C%20%20%5C%5C%20X%2By%5C%25%5Ctext%7B%20of%20%7DX%3D%5Ctext%7B%20Salary%20after%20first%20year%7D%20%5C%5C%20%20%5C%5C%20%28X%2By%5C%25%5Ctext%7B%20of%20%7DX%29%2By%5C%25%5Ctext%7B%20of%20%7D%28X%2By%5C%25%5Ctext%7B%20of%20%7DX%29%5Ctext%7B%20%3D%20Salary%20after%20second%20year.%7D%20%5C%5C%20%20%5C%5C%20%5Ctext%7B%20But%20we%20already%20know%20that%20the%20salary%20after%20second%20year%20is%20%7D1.28X%20%5C%5C%20%5Ctext%7B%20Thus%2C%20we%20can%20say%3A%7D%20%5C%5C%20%28X%2By%5C%25%5Ctext%7B%20of%20%7DX%29%2By%5C%25%5Ctext%7B%20of%20%7D%28X%2By%5C%25%5Ctext%7B%20of%20%7DX%29%3D1.28X%20%5C%5C%20%20%5C%5C%20%5Ctext%7B%20Simplifying%2C%20we%20have%3A%7D%20%5C%5C%20X%2B%5Cfrac%7ByX%7D%7B100%7D%2B%5Cfrac%7By%7D%7B100%7D%28X%2B%5Cfrac%7ByX%7D%7B100%7D%29%3D1.28X%20%5C%5C%20%20%5C%5C%20%5Ctext%7B%20Divide%20through%20by%20%7DX%20%5C%5C%201%2B%5Cfrac%7By%7D%7B100%7D%2B%5Cfrac%7By%7D%7B100%7D%281%2B%5Cfrac%7By%7D%7B100%7D%29%3D1.28%20%5C%5C%20%20%5C%5C%20%5Ctext%7B%20Subtract%201%20from%20both%20sides%20and%20expand%20the%20brackets%7D%20%5C%5C%20%5Cfrac%7By%7D%7B100%7D%2B%5Cfrac%7By%7D%7B100%7D%2B%28%5Cfrac%7By%7D%7B100%7D%29%5E2%3D1.28-1%3D0.28%20%5C%5C%20%20%5C%5C%20%5Cfrac%7B2y%7D%7B100%7D%2B%28%5Cfrac%7By%7D%7B100%7D%29%5E2%3D0.28%20%5C%5C%20%20%5C%5C%20%5Ctext%7B%20Multiply%20both%20sides%20by%20%7D100%5E2%20%5C%5C%20200y%2By%5E2%3D2800%20%5C%5C%20%20%5C%5C%20%5Ctext%7B%20Rewrite%2C%20we%20have%3A%7D%20%5C%5C%20y%5E2%2B200y-2800%3D0%20%5C%5C%20%20%5C%5C%20Solving%5Ctext%7B%20the%20equation%20using%20the%20Quadratic%20formula%2C%20we%20have%20that%3A%7D%20%5C%5C%20y%3D%5Cfrac%7B-200%5Cpm%5Csqrt%7B200%5E2-4%28-2800%29%7D%281%29%7D%7B2%281%29%7D%20%5C%5C%20%20%5C%5C%20y%3D-213.137%5Ctext%7B%20%20%20or%20%20%20%7D13.137%20%5C%5C%20%20%5C%5C%20%5Ctext%7B%20Since%20the%20change%20in%20salary%20is%20an%20increase%2C%20thus%2C%20the%20rate%20%7Dy%5Ctext%7B%20has%20to%20be%20positive.%7D%20%5C%5C%20%5Ctext%7B%20Thus%2C%20%7D%20%5C%5C%20y%3D13.137%5Capprox13.14%5C%25%20%5C%5C%20%20%5C%5C%20%20%5Cend%7Bgathered%7D)
Final Answer
y = 13.14%
The screenshots of the solution are: