Answer:
Expected number of hours before the the group exits the building = E[Number of hours] = 3.2 hours
Step-by-step explanation:
Expected value, E(X) is given as
E(X) = Σ xᵢpᵢ
xᵢ = each variable
pᵢ = probability of each variable
Let X represent the number of hours before exiting the building taking each door. Note that D = Door
D | X | P(X)
1 | 3.0 | 0.2
2 | 3.5 | 0.1
3 | 5.0 | 0.2
4 | 2.5 | 0.5
E(X) = (3×0.2) + (3.5×0.1) + (5×0.2) + (2.5×0.5) = 3.2 hours
Hope this Helps!!!
5 * 7 = 9y
35 = 9y
<span>
<span>
<span>
3.8888888889
</span>
</span>
</span>
y = 3.9
9514 1404 393
Answer:
(-3, 3)
Step-by-step explanation:
The blanks are trying to lead you through the process of finding the point of interest.
__
The horizontal distance from T to S is <u> 9 </u>. (or -9, if you prefer)
The ratio you're trying to divide the line into is the ratio that goes in this blank:
Multiply the horizontal distance by <u> 2/3 </u>. (9×2/3 = 6)
Move <u> 6 </u> units <u> left </u> from point T.
The vertical distance from T to S is <u> 6 </u>.
Multiply the vertical distance by <u> 2/3 </u>. (6×2/3 = 4)
Move <u> 4 </u> units <u> up </u> from point T.
__
Point T is (3, -1) so 6 left and 4 up is (3, -1) +(-6, 4) = (3-6, -1+4) = (-3, 3). The point that is 2/3 of the way from T to S is (-3, 3).
The hint says that volume of a rectangular solid = l*w*h, where l = length, w = width, and h = height. Use this to solve for the height of the solid by plugging in the numbers you know.
You know that length, l = 2cm, width, w = 8cm, and, *EDITED* volume = 160 cm^3. Plug these values into the equation for volume (the hint) and solve for h, the height:
Volume = lwh
160 = (2)(8)(h)
160 = 16h
h = 10cm
-------
Answer: The height is 10 cm
So x + y = 45, and 4x + 5y = 195. Get y by itself. Subtract x from both sides in the first equation to get y = 45 -x, and subtract 4x from the second equation to get 5y = 195 - 4x. Divide by 5 to both sides to get y = 39 - 4/5x. 39 - 4/5x = 45 - x. Add x to both sides to get 39 - 1/5x = 45. Subtract 39 from both sides to get -1/5x = 6. Divide by -1/5 to get x = -30, or 30. In the first equation, do 30 + y = 45. Subtract 30 from both sides to get y = 15. Check. 4(30) + 15(5) = 195, or 120 + 75 = 195.