1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ghella [55]
3 years ago
5

(a) Please show that the heat capacity at constant volume and constant pressure for air are given by,Cv=macvmwherecvm= (1 + 0.92

rv)cvdandCp=macpmwherecpm= (1 + 0.84rv)cpdIn the above equations, the mass of air isma=md+mv, wheremdandmvare the masses of dry air andvapor, respectively. The specific heats at constant volume and pressure for moist air (the combination ofdry air and vapor) arecvmandcpm, respectively. (b) The vapor pressure varies greatly in the atmosphere.At a temperature of 0oC, the vapor pressure can reach 611 Pa, while at 30oC, it can reach 4350 Pa. Howmuch do the specific heats at constant volume and pressure for moist air,cvmandcpm, vary at Earth’ssurface? Assume a surface pressure of 100,000 Pa.
Engineering
1 answer:
forsale [732]3 years ago
7 0

Answer:

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

You might be interested in
Name two types of battery chargers that are used in mechanics
tekilochka [14]
Primary batteries
Secondary batteries
7 0
3 years ago
Calculate the equivalent capacitance of the three series capacitors in Figure 12-1
GrogVix [38]

The question is incomplete! Complete question along with answer and step by step explanation is provided below.

Question:

Calculate the equivalent capacitance of the three series capacitors in Figure 12-1

a) 0.01 μF

b) 0.58 μF

c) 0.060 μF

d) 0.8 μF

Answer:

The equivalent capacitance of the three series capacitors in Figure 12-1 is 0.060 μF

Therefore, the correct option is (c)

Explanation:

Please refer to the attached Figure 12-1 where three capacitors are connected in series.

We are asked to find out the equivalent capacitance of this circuit.

Recall that the equivalent capacitance in series is given by

$ \frac{1}{C_{eq}} =  \frac{1}{C_{1}} + \frac{1}{C_{2}} + \frac{1}{C_{3}} $

Where C₁, C₂, and C₃ are the individual capacitance connected in series.

C₁ = 0.1 μF

C₂ = 0.22 μF

C₃ = 0.47 μF

So the equivalent capacitance is

$ \frac{1}{C_{eq}} =  \frac{1}{0.1} + \frac{1}{0.22} + \frac{1}{0.47} $

$ \frac{1}{C_{eq}} =  \frac{8620}{517}  $

$ C_{eq} =  \frac{517}{8620}  $

$ C_{eq} =  0.0599  $

Rounding off yields

$ C_{eq} =  0.060 \: \mu F $

The equivalent capacitance of the three series capacitors in Figure 12-1 is 0.060 μF

Therefore, the correct option is (c)

5 0
3 years ago
A belt drive was designed to transmit the power of P=7.5 kW with the velocity v=10m/s. The tensile load of the tight side is twi
Leviafan [203]

Answer:

F₁ = 1500 N

F₂ = 750 N

F_{e} = 500 N

Explanation:

Given :

Power transmission, P = 7.5 kW

                                      = 7.5 x 1000 W

                                      = 7500 W

Belt velocity, V = 10 m/s

F₁ = 2 F₂

Now we know from power transmission equation

P = ( F₁ - F₂ ) x V

7500 = ( F₁ - F₂ ) x 10

750 =  F₁ - F₂

750 = 2 F₂ - F₂      ( ∵F₁ = 2 F₂ )

∴F₂  = 750 N

Now F₁ = 2 F₂

        F₁ = 2 x F₂

        F₁ = 2 x 750

        F₁ = 1500 N   ,   this is the maximum force.

Therefore we know,

F_{max} = 3 x F_{e}

where F_{e} is centrifugal force

 F_{e} = F_{max} / 3

                          = 1500 / 3

                         = 500 N

8 0
3 years ago
A train travels 650 meters in 25 seconds. What is the train's velocity?
frosja888 [35]

The train is traveling 26 meters A second .

3 0
3 years ago
Define the terms (a) thermal conductivity, (b) heat capacity and (c) thermal diffusivity
IceJOKER [234]

Explanation:

<u>(a)</u>

<u>The measure of material's ability to conduct thermal energy (heat) is known as thermal conductivity.</u> For examples, metals have high thermal conductivity, it means that they are very efficient at conducting heat.<u> The SI unit of heat capacity is W/m.K.</u>

The expression for thermal conductivity is:

q=-\kappa \bigtriangledown T

Where,

q is the heat flux

\kappa is the thermal conductivity

\bigtriangledown T is the temperature gradient.

<u>(b)</u>

<u>Heat capacity for a substance is defined as the ratio of the amount of energy required to change the temperature of the substance and the magnitude of temperature change. The SI unit of heat capacity is J/K.</u>

The expression for Heat capacity is:

C=\frac{E}{\Delta T}

Where,

C is the Heat capacity

E is the energy absorbed/released

\Delta T is the change in temperature

<u>(c)</u>

<u>Thermal diffusivity is defined as the thermal conductivity divided by specific heat capacity at constant pressure and its density. The Si unit of thermal diffusivity is m²/s.</u>

The expression for thermal diffusivity is:

\alpha=\frac{\kappa}{C_p \times \rho}

Where,

\alpha is thermal diffusivity

\kappa is the thermal conductivity

C_p is specific heat capacity at constant pressure

\rho is density

6 0
3 years ago
Other questions:
  • Which term defines the amount of mechanical work an engine can do per unit of heat energy it uses?
    5·1 answer
  • Consider the fully developed flow of glycerin at 40°C through a 60-m-long, 4-cm-diameter, horizontal, circular pipe. If the flow
    15·1 answer
  • A model of a submarine, 1:15 scale, is to be tested at 180 ft/s in a wind tunnel with standard sea-level air, while theprototype
    8·1 answer
  • A completely mixed activated-sludge process is being designed for a wastewater flow of 10,000 m3/d (2.64 mgd) using the kinetics
    6·1 answer
  • A hot-water stream at 80°C enters a mixing chamber with a mass flow rate of 0.46 kg/s where it is mixed with a stream of cold wa
    14·1 answer
  • What are the important things to remember when arriving for an interview?
    15·1 answer
  • A pump transfers water from a lake to a reservoir, which is located 29.2 m above the lake, at a rate of 11.5 L/s. Determine the
    12·1 answer
  • Which type of blade is used with a demolition saw?
    11·1 answer
  • The hot-wire anemometer.' A hot-wire anemome ter is essentially a fine wire, usually made of platinum,which is heated electrical
    6·1 answer
  • Best known for his invention of the pressure-ignited heat engine that bears his name,
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!