Answer:
The temperature at which observed heat is 400 K
Explanation:
Given data:
rejection reservoir temperature at exit
is 300 k
the efficiency of a engine is η = 25%
we know that efficiency of Carnot is given as

Putting all value to obtained temperature at which observed heat

= 400 K
Answer: The answer is C. Gasoline and greases and here is some more info
In fire classes, a Class B fire is a fire in flammable liquids or flammable gases, petroleum greases, tars, oils, oil-based paints, solvents, lacquers, or alcohols. For example, propane, natural gas, gasoline and kerosene fires are types of Class B fires.
Explanation:
During some actual expansion and compression processes in piston-cylinder devices, the gases have been are the P1= P2.
<h3>What is the pressure?</h3>
Pressure is something that has the pressure that is physical and that causes the pressure is piston-cylinder devices.
During a few real enlargements and compression procedures in piston-cylinder devices, the gases were located to meet the connection PV n = C, wherein n and C are constants.
Read more about the pressure :
brainly.com/question/25736513
#SPJ1
Answer: Rc = 400 Ω and Rb = 57.2 kΩ
Explanation:
Given that;
VCE = 5V
VCC = 15 V
iC = 25 mA
β = 100
VD₀ = 0.7 V
taking a look at the image; at loop 1
-VCC + (i × Rc) + VCE = 0
we substitute
-15 + ( 25 × Rc) + 5 = 0
25Rc = 10
Rc = 10 / 25
Rc = 0.4 k
Rc = 0.4 × 1000
Rc = 400 Ω
iC = βib
25mA = 100(ib)
ib = 25 mA / 100
ib = 0.25 mA
ib = 0.25 × 1000
ib = 250 μAmp
Now at Loop 2
-Vcc + (ib×Rb) + VD₀ = 0
-15 (250 × Rb) + 0.7 = 0
250Rb = 15 - 0.7
250Rb = 14.3
Rb = 14.3 / 250
Rb = 0.0572 μ
Rb = 0.0572 × 1000
Rb = 57.2 kΩ
Therefore Rc = 400 Ω and Rb = 57.2 kΩ