Answer:
As a worker, it is important to follow the proper set of instructions or emergency plans during an emergent situation. Not carefully following the rules may result to a bigger problem such as further injury and damage to property.
Explanation:
Evacuation Procedure- This is a step-by-step procedure that people follow in order to safely vacate any building or place. This procedure is applicable to any situation, such as the workplace. This is now called the <em>Workplace Evacuation Procedure. </em>This is very important because there are so many unpredictable situations or events that are happening in the world right now, such as fire or earthquake. This procedure is being done through an evacuation plan.
The awareness of the workers regarding the proper way to evacuate during emergency situation is very important. It will be easier for them to know where to locate the nearest exit route. They will also learn to stop any form of device or equipment that could cause a hazzard during the situation. In case of the hospital, which is also a workplace, the employees will also learn how to assist the patients before themselves. They will also know where to assemble if there's a need to do so.
Answer:
a. Heat removal rate will increase
b. Heat removal rate will decrease
Explanation:
Given that
One end of rod is connected to the furnace and rod is long.So this rod can be treated as infinite long fin.
We know that heat transfer in fin given as follows

We know that area

Now when diameter will triples then :





So the new heat transfer will increase by 3 times.
Now when copper rod will replace by aluminium rod :
As we know that thermal conductivity(K) of Aluminium is low as compare to Copper .It means that heat transfer will decreases.
Answer:
heat transfer rate is -15.71 kW
Explanation:
given data
Initial pressure = 4 bar
Final pressure = 12 bar
volumetric flow rate = 4 m³ / min
work input to the compressor = 60 kJ per kg
solution
we use here super hated table for 4 bar and 20 degree temperature and 12 bar and 80 degree is
h1 = 262.96 kJ/kg
v1 = 0.05397 m³/kg
h2 = 310.24 kJ/kg
and here mass balance equation will be
m1 = m2
and mass flow equation is express as
m1 =
.......................1
m1 =
m1 = 1.2353 kg/s
and here energy balance equation is express as
0 = Qcv - Wcv + m × [ ( h1-h2) +
+ g (z1-z2) ] ....................2
so here Qcv will be
Qcv = m × [
] ......................3
put here value and we get
Qcv = 1.2353 × [ {-60}+ (310.24-262.96) ]
Qcv = -15.7130 kW
so here heat transfer rate is -15.71 kW
Answer:
a fluid power engine okk done please