1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BaLLatris [955]
3 years ago
14

One-dimensional, steady-state conduction with uniform internal energy generation occurs in a plane wall with a thickness of 50 m

m and a constant thermal conductivity of 5 W/m*K. For these condtions, the temperature distribution has the form T(x)=a+bx+cx^2. The surface at x=0 has a temperature of T(0)=To=120 deg. (C) and h=500 W/m^2*K. The surface at x=L is well insulated.(a) Applying an overall energy balance to the wall, calculate the volumetric energy generation rate q.(b) Determine the coefficients a,b,c by applying the boundary conditions to the prescribed temperature distribution. Use the results to calculate and plot the temp. distribution.(c) Consider conditions for whic hthe convection coefficient is halved, but q remains unchanged. Determin the new values for a,b,c and plot the temperature dist. (Hint: T(0) is no longer 120)(d) Under conditions for which q is doubled and the convection coeff. remains unchanged (h=500 W/m^2*K) determine new a,b,c and plot temp distribution. Compare (a),(b),and (c) and discuss the effects of h and q on the distributions.
Engineering
1 answer:
uysha [10]3 years ago
4 0

Answer: please help me tooo

Explanation:

You might be interested in
Air at a pressure of 6000 N/m^2 and a temperature of 300C flows with a velocity of 10 m/sec over a flat plate of length 0.5 m. E
White raven [17]

Answer:

Q=hA(T_{w}-T_{inf})=16.97*0.5(27-300)=-2316.4J

Explanation:

To solve this problem we use the expression for the temperature film

T_{f}=\frac{T_{\inf}+T_{w}}{2}=\frac{300+27}{2}=163.5

Then, we have to compute the Reynolds number

Re=\frac{uL}{v}=\frac{10\frac{m}{s}*0.5m}{16.96*10^{-6}\rfac{m^{2}}{s}}=2.94*10^{5}

Re<5*10^{5}, hence, this case if about a laminar flow.

Then, we compute the Nusselt number

Nu_{x}=0.332(Re)^{\frac{1}{2}}(Pr)^{\frac{1}{3}}=0.332(2.94*10^{5})^{\frac{1}{2}}(0.699)^{\frac{1}{3}}=159.77

but we also now that

Nu_{x}=\frac{h_{x}L}{k}\\h_{x}=\frac{Nu_{x}k}{L}=\frac{159.77*26.56*10^{-3}}{0.5}=8.48\\

but the average heat transfer coefficient is h=2hx

h=2(8.48)=16.97W/m^{2}K

Finally we have that the heat transfer is

Q=hA(T_{w}-T_{inf})=16.97*0.5(27-300)=-2316.4J

In this solution we took values for water properties of

v=16.96*10^{-6}m^{2}s

Pr=0.699

k=26.56*10^{-3}W/mK

A=1*0.5m^{2}

I hope this is useful for you

regards

8 0
4 years ago
A 1-kW electric resistance heater submerged in 10-kg water is turned on and kept on for 15 min. During the process, 400 kJ of he
hichkok12 [17]

Answer:

ΔT=  11.94 °C

Explanation:

Given that

mass of water = 10 kh

Time t= 15 min

Heat lot from water = 400  KJ

Heat input to the water = 1  KW

Heat input the water= 1 x 15 x 60

                                =900 KJ

By heat balancing

Heat supply - heat rejected = Heat gain by water

As we know that heat capacity of water

C_p=4.187 \frac{KJ}{kg-K}

Q=mC_p\Delta T

Now by putting the values

900 - 400 = 10 x 4.187 x ΔT

So  rise in temperature of water ΔT=  11.94 °C

6 0
3 years ago
B. Is the “Loading Time” of any online application a functional or a non-functional requirement? Can the requirement engineers s
Oksi-84 [34.3K]

Answer:

non-functional requirement,

Yes they can.

The application loading time is determined by testing system under various scenarios

Explanation:

non-functional requirement are requirements needed to justify application behavior.

functional requirements are requirements needed to justify what the application will do.

The loading time can be stated with some accuracy level after testing the system.

4 0
3 years ago
How to study thermodynamics?​
expeople1 [14]

It is study of the relationships between heat, temprature, work and energy

7 0
3 years ago
Read 2 more answers
Q1. (20 marks) Entropy Analysis of the heat engine: consider a 35% efficient heat engine operating between a large, high- temper
Anvisha [2.4K]

The rate of gain for the high reservoir would be 780 kj/s.

A. η = 35%

\frac{w}{Q1} = \frac{35}{100}

W = 1.2*\frac{35}{100}*1000kj/s

W = 420 kj/s

Q2 = Q1-W

= 1200-420

= 780 kJ/S

<h3>What is the workdone by this engine?</h3>

B. W = 420 kj/s

= 420x1000 w

= 4.2x10⁵W

The work done is 4.2x10⁵W

c. 780/308 - 1200/1000

= 2.532 - 1.2

= 1.332kj

The total enthropy gain is 1.332kj

D. Q1 = 1200

T1 = 1000

\frac{1200}{1000} =\frac{Q2}{308} \\\\Q2 = 369.6 KJ

<h3>Cournot efficiency = W/Q1</h3>

= 1200 - 369.6/1200

= 69.2 percent

change in s is zero for the reversible heat engine.

Read more on enthropy here: brainly.com/question/6364271

6 0
3 years ago
Other questions:
  • Question 5 (20 pts) The rated current of a three-phase transmission line is 300 A. The currents flowing by the line are measured
    6·1 answer
  • The lab technician you recently hired tells you the following: Boss, an undisturbed sample of saturated clayey soil was brought
    6·1 answer
  • a vehicle is in her repair with a complaint at for heating output during testing and diagnosing air is found to be trapped in th
    15·1 answer
  • Unwanted resistance is being discussed.
    12·1 answer
  • If a pendulum takes 2 sec to swing in each direction, find the period and the frequency of the swing
    15·1 answer
  • What's the difference between a GED and a Diploma?
    12·1 answer
  • Express the unsteady angular momentum equation in vector form for a control volume that has a constant moment of inertia I, no e
    9·1 answer
  • I need this asap thank you :) plzzzzz When the spring on a mousetrap car is fully unwound, the force acting on the car is _____.
    11·1 answer
  • Which of the following is true regarding screw gauges and shank?
    5·1 answer
  • The team needs to choose a primary view for the part drawing. Three team members make suggestions:
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!