Thermometer-temperature
Wind vane -wind direction
Anemometer- both wind speed (and direction)
Hygrometer- humidity
Answer:
Maximum height attained by the model rocket is 2172.87 m
Explanation:
Given,
- Initial speed of the model rocket = u = 0
- acceleration of the model rocket =

- time during the acceleration = t = 2.30 s
We have to consider the whole motion into two parts
In first part the rocket is moving with an acceleration of a = 85.0
for the time t = 2.30 s before the fuel abruptly runs out.
Let
be the height attained by the rocket during this time intervel,

And Final velocity at that point be v

Now, in second part, after reaching the altitude of 224.825 m the fuel abruptly runs out. Therefore rocket is moving upward under the effect of gravitational acceleration,
Let '
' be the altitude attained by the rocket to reach at the maximum point after the rocket's fuel runs out,
At that insitant,
- initial velocity of the rocket = v = 195.5 m/s.
- a =

- Final velocity of the rocket at the maximum altitude =

From the kinematics,

Hence the maximum altitude attained by the rocket from the ground is

So, the average speed of the Cheetah is 17.6 m/s.
<h3>Introduction</h3>
Hello ! I'm Deva from Brainly Indonesia. This time, I will help regarding the average speed. The average speed is obtained from finding the average of the speeds that occur or can be detected from the division between distance and travel time. The average speed can be formulated by :

With the following condition :
= average speed (m/s)- s = shift or distance objects from initial movement (m)
- t = interval of the time (s)
<h3>Problem Solving</h3>
We know that :
- s = shift = 88 m
- t = interval of the time = 5 seconds
What was asked :
= average speed = ... m/s
Step by step :



So, the average speed of the Cheetah is 17.6 m/s.
Answer: he used a compass to find the direction of the magnetic field