<u>Answer:</u>
0.24 m
<u>Explanation:</u>
Given:
Wave velocity ( v ) = 360 m / sec
Frequency ( f ) = 1500 Hz
We have to calculate wavelength ( λ ):
We know:
v = λ / t [ f = 1 / t ]
v = λ f
= > λ = v / f
Putting values here we get:
= > λ = 360 / 1500 m
= > λ = 36 / 150 m
= > λ = 0.24 m
Hence, wavelength of sound is 0.24 m.
Answer:
<em> 3980.89 ohms</em>
Explanation:
The capacitive reactance is expressed as;

f is the frequency
C is the capacitance of the capacitor
Given
f = 60H
C = C1+C2 (parallel connection)
C = 15μF + 25μF
C = 40μF
C = 
Substitute into the formula:

<em>Hence the total capacitive reactance is 3980.89 ohms</em>
Answer:

Explanation:
We have,
The surface temperature of the star is 60,000 K
It is required to find the wavelength of a star that radiated greatest amount of energy. Wein's displacement law gives the relation between wavelength and temperature such that :

Here,
= wavelength

So, the wavelength of the star is
.
Answer:
option d and b..............