Answer:
(a) 0.28347
(b) 0.36909
(c) 0.0039
(d) 0.9806
Step-by-step explanation:
Given information:
n=12
p = 20% = 0.2
q = 1-p = 1-0.2 = 0.8
Binomial formula:

(a) Exactly two will be drunken drivers.



Therefore, the probability that exactly two will be drunken drivers is 0.28347.
(b)Three or four will be drunken drivers.


Using binomial we get



Therefore, the probability that three or four will be drunken drivers is 0.3691.
(c)
At least 7 will be drunken drivers.

![P(x\leq 7)=1-[P(x=0)+P(x=1)+P(x=2)+P(x=3)+P(x=4)+P(x=5)+P(x=6)]](https://tex.z-dn.net/?f=P%28x%5Cleq%207%29%3D1-%5BP%28x%3D0%29%2BP%28x%3D1%29%2BP%28x%3D2%29%2BP%28x%3D3%29%2BP%28x%3D4%29%2BP%28x%3D5%29%2BP%28x%3D6%29%5D)
![P(x\leq 7)=1-[0.06872+0.20616+0.28347+0.23622+0.13288+0.05315+0.0155]](https://tex.z-dn.net/?f=P%28x%5Cleq%207%29%3D1-%5B0.06872%2B0.20616%2B0.28347%2B0.23622%2B0.13288%2B0.05315%2B0.0155%5D)
![P(x\leq 7)=1-[0.9961]](https://tex.z-dn.net/?f=P%28x%5Cleq%207%29%3D1-%5B0.9961%5D)

Therefore, the probability of at least 7 will be drunken drivers is 0.0039.
(d) At most 5 will be drunken drivers.



Therefore, the probability of at most 5 will be drunken drivers is 0.9806.
Answer:
The total weight of his purchase is 1.08 pounds
Step-by-step explanation:
To find the total weight of his purchase, we sum the weight of each of his purchases.
He purchased:
4/9 pound of peanut.
7/11 pounds of raisins
Total:
The least common multiple between 9 and 11 is 99.
Then

The total weight of his purchase is 1.08 pounds
<h2>The test is worth 15 points.</h2><h3 /><h3>Double-check:</h3><h3>15 x 1.2 = 18</h3>
The rule of exponential multiplication is (a^x)*(a^y)=a^(x+y)
using this with your expression, we can do
(10^1)*(10^3)*(10^2)=10^(1+3+2)=10^6
Final answer:
10^6 or 1 million
Hope I helped :)
Dr. Appiah’s patients’ ages vary less than do Dr. Singh’s patients’ ages.
GARBAGE DAY!