Answer:
801 g
Explanation:
From the question given above, the following data were obtained:
Number of mole of Ba₃(PO₄)₂ = 1.33 moles
Mass of Ba₃(PO₄)₂ =?
Next, we shall determine the molar mass of Ba₃(PO₄)₂. This can be obtained as follow:
Molar mass of Ba₃(PO₄)₂ = (137.3×3) + 2[31 + (4×16)]
= 411.9 + 2[31 + 64]
= 411.9 + 2[95]
= 411.9 + 190
Molar mass of Ba₃(PO₄)₂ = 601.9 g/mol
Finally, we shall determine the mass of Ba₃(PO₄)₂. This can be obtained as follow:
Number of mole of Ba₃(PO₄)₂ = 1.33 moles
Molar mass of Ba₃(PO₄)₂ = 601.9 g/mol
Mass of Ba₃(PO₄)₂ =?
Mole = mass /Molar mass
1.33 = Mass of Ba₃(PO₄)₂ / 601.9
Cross multiply
Mass of Ba₃(PO₄)₂ = 1.33 × 601.9
Mass of Ba₃(PO₄)₂ = 801 g
Answer:
Explanation:
To find the theoretical yield of the equation. First identify the limiting reactant in a chemical equation.
Step 1: write out the equation and balance it.
Al+ 3mno2=3mn+ 2Alo3.
The limiting reactant is mn02 because it is not found in excess.
Step 2: convert the % to gram . All contain 67.2% mole and mno2 will be 100-67.2= 32.8
All=67.2÷100×290(total gram of the reactants)=194.88g
Mno2=32.8÷100×290g=94.12g.
Step 3:calculate the molar mass of mno2 and that of mn. The atomic mass of mn is 54.9380 and that of oxygen is 16.
Mno2=54.938+ (16)2=86.98g/mol.
Mn=54.938.
Step 4:
From your balanced equation , calculate mn.
94.12g mno2× (1mol mno2÷86.98(molarmass) of mno2×3 mol of mn/4molAl×54.938g of mn÷1mol of mn.
94.12g×1÷86.98g×3÷4×54.938÷1
=44.58g
I think it’s C
I’m so sorry if it’s wrong!
It would probably be a balance or scale
Heat is transmitted to the surroundings as follows: molecules collide with the glass, and the glass molecules then transmit that energy to the outside.
<h3>WHAT IS HEAT TRANSFER</h3>
Heat energy is lost when molecules collide in a chemical reaction.
According to this question, a reaction is occuring in a test tube. The reaction involves a collision of molecules that results in the loss of heat energy.
This energy is transmitted to the surroundings as follows when molecules collide with the glass, and the glass molecules then transmit that energy to the outside.
Learn more about heat transfer at: brainly.com/question/12107378