She needs to know the distance from LA to SF.
Call that distance x. Then you can calculate the cost from:
# of gallons consumed: x miles / 38 miles/ gallon = (x/38) gallons
After that,
cost = # gallons * cost per gallon = (x/38) gallons * 4 $/gallon = 4x/38 $
Answer:
the individual atom in the molecule
Explanation:
In chemistry, the ball-and-stick model is a molecular model of a chemical substance. Invidual spheres there represent atoms in the molecule. The bigger atomic number the atom has, the larger diameter of the spheres this atom has in this model.
I hope this answer will help you. Have a nice day !
Answer:
B
Explanation:
it shows that the solution is neutral.
I hope this helps
Answer:
The granite block transferred <u>4080 joules</u> of energy, and the mass of the water is <u>35.84 grams</u>.
Explanation:
The equation needed to answer both parts of the question is:
Q = mcΔT
In this equation,
-----> Q = energy/heat (J)
-----> m = mass (g)
-----> c = specific heat (J/g°C)
-----> ΔT = change in temperature (°C)
<u>Part #1:</u>
First, you need to find the energy transferred from granite block using the previous equation. You have been given the mass, specific heat, and change in temperature.
Q = ? J c = 0.795 J/g°C
m = 126.1 g ΔT = 92.6 °C - 51.9 °C = 40.7 °C
Q = mcΔT
Q = (126.1 g)(0.795 J/g°C)(40.7 )
Q = 4080
<u>Part #2:</u>
Secondly, using the energy calculated in Part #1, you need to calculate the mass of the water. You have calculated the energy transferred, and have been given the specific heat and change in temperature.
Q = 4080 J c = 4.186 J/g°C
m = ? g ΔT = 51.9 °C - 24.7 °C = 27.2 °C
Q = mcΔT
4080 J = m(4.186 J/g°C)(27.2 °C)
4080 J = m(113.8592)
35.84 = m