Answer:
46.19 L
Explanation:
The efficiency of the solar water heater is 40% which means 40% of the solar energy is converted to useful energy, ie. used to heat the water.
Useful energy = P = solar energy * available area * efficiency
P = 200 W/m^2 * 29.5 m^2 * 40%
P = 2360 W = 2.36 kJ/s
This means that 2.36 kJ of useful energy will be utilized per second. Converting this to the useful energy in hour gives us:
Average energy in one hour = 2.36 kJ/s * 3600 s/h = 8496 kJ
The specific heat capacity of water is 4.18 kJ/kg.C which means it will take 4.18 kJ of energy to raise the temperature of 1 kg of water by 1 degree C. Equating the energy change of the water for the given temperature rise and mass (unknown) to the useful energy utilized in one hour, we can solve to determine the unknown mass. This will give us the mass of water heated in one hour:
Energy = mass * specific heat capacity * (final temperature - initial temperature)
8496 = mass * 4.18 * (60 - 16)
mass = 46.19 kg
Lastly, this mass has to be converted to volume. Assuming density of water is constant through out the heating process:
volume = mass / density
volume = 46.19 kg / 1 kg/L
volume = 46.19 L
Answer:
First, the image moves in and out of focus too quickly, so that it is difficult to precisely adjust the focus. Second, you run the risk of crashing the objective into the slide. Use the coarse focus only with the 4x low power objective. You can use the fine focus knob with all objectives.
Explanation:
Answer:
its a shield that can protect us from super hot rays and all though ita not that strong atleast we wont get burned to death lol :)
Answer:
Scalar quantity
Vector quantity
Explanation:
A scalar quantity is a quantity that is fully described by magnitude alone. Examples include; mass, temperature etc
A vector quantity is described by both magnitude and direction. E.g force, weight etc
Answer:
Vertical Height = 0.784 meter, Speed back at starting point = 10 m/s
Explanation:
Given Data:
V is the overall velocity vector,
and
are its initial vertical and horizontal components

To find:
Max Height
achieved
Calculation:
1) Using the
equation of motion, we know

2) In terms of gravity
height
and the vertical component of Velocity
.
3) As
as at maximum height the vertical component of velocity is zero maximum height achieved

putting values
4) 
5) As for the speed when it reaches back its starting point, it will have a speed similar to its launching speed, the reason being the absence of air friction (Air drag)