Answer:
769.50
Step-by-step explanation:
95 ÷ 20 = 4.75
So, 4.75 is the cost per student
4.75 × 162 = 769.50
So, 4.75 dollars per student times 162 students is 769.50
If scores on an exam follow an approximately normal distribution with a mean of 76.4 and a standard deviation of 6.1 points, then the minimum score you would need to be in the top 2% is equal to 88.929.
A problem of this type in mathematics can be characterized as a normal distribution problem. We can use the z-score to solve it by using the formula;
Z = x - μ / σ
In this formula the standard score is represented by Z, the observed value is represented by x, the mean is represented by μ, and the standard deviation is represented by σ.
The p-value can be used to determine the z-score with the help of a standard table.
As we have to find the minimum score to be in the top 2%, p-value = 0.02
The z-score that is found to correspond with this p-value of 0.02 in the standard table is 2.054
Therefore,
2.054 = x - 76.4 ÷ 6.1
2.054 × 6.1 = x - 76.4
12.529 = x - 76.4
12.529 + 76.4 = x
x = 88.929
Hence 88.929 is calculated to be the lowest score required to be in the top 2%.
To learn more about normal distribution, click here:
brainly.com/question/4079902
#SPJ4
Answer:
the picture is not clear can you take a new picture so I can help.
Step-by-step explanation:
P = ab^2
q = a^3 b
p = a * b * b
q = a*a*a * b
Pairing the duplicates we have LCM = a*a*a*b*b = a^3 b^2 answer
Answer:
The equation of line with given slope that include given points is 3 y + x - 20 = 0
Step-by-step explanation:
According to Cora , if we know the slope and points on a line then we can write the equation of a line .
Since , The equation of line in slope-intercept form is
y = m x + c
<u>Where m is the slope of line , and if we know the points ( x , y ) which satisfy the line then constant term c can be get and the equation of line can be formed .</u>
So , From the statement said above it is clear that she is correct .
Now , Again
Given as :
Slope of a line is m = - 
That include points ( 2 , 6 )
Now from the equation of line as y = m x + c
∴ 6 = -
( 2 ) + c
Or, 6 = -
+ c
So , c = 6 +
or, c =
∴ c =
So, The equation of line can be written as
y = -
x +
Or, 3 y = - x + 20
I.e 3 y + x - 20 = 0
Hence The equation of line with given slope that include given points is 3 y + x - 20 = 0 Answer