Answer:
ΔH°(f) = -110.5 Kj/mole (exothermic)
Explanation:
C + 1/2O₂ => CO
This is asking for the 'Standard Heat of Formation (ΔH°(f)* for carbon monoxide (CO). Values for many compounds can be found in the appendix of most college general chemistry text books. From Ebbing & Gammon, 11th edition, General Chemistry, Appendix C, page 8A.
*Standard Heat of Formation by definition is the heat gained or lost on formation of a substance (compound) from its basic elements in standard state.
The ΔH°(f) values as indicated are found in the appendix of most college chemistry texts. By choosing any compound, one can determine the standard heat of formation equation for the substance of interest. For example, consider Magnesium Carbonate; MgCO₃(s).The basic standard states of each element is found in the Appendix on Thermodynamic Properties for Substances at 25°C & 1 atm. having ΔH°(f) values = 0.00 Kj/mole. All elements in standard state have a 0 Kj/mol. See appendix and note that under the ΔH°(f) symbol some substances have 0.00 Kj/mol values. The associated element will be in basic standard state,
Standard Heat of Formation Equation for formation of Magnesium Carbonate;
Mg°(s) + C°(gpt)* + 3/2O₂(g) => MgCO₃(s) ; ΔH°(f) = -1111.7 Kj/mole
* gpt => graphite
This is a simple chemical change due to what it produces and how it is added together. Hope this helps.
Answer:
[Ar]3d^{10}4s^{2}4p^{6}
Explanation:
Electronic Configuration of Bromine : [Ar]3d^{10}4s^{2}4p^{5}
At oxidation state -1, electronic Configuration of Bromine : [Ar]3d^{10}4s^{2}4p^{6}
Answer:
H2
Explanation:
In the first place it is necessary to consider that these two elements will be their diatomic form initially, that is, H2 and N2.
first we should check the equilibrium constant Kp tables in this case at a temperature of 3000K
Value for dissociation reaction of H2 in Kp = -3.685
Value for dissociation reaction of N2 in Kp = -22.359
Equilibrium constant for H2 dissociation is higher than N2 dissociation. so for this comparation H2 is more likely to dissociate.
Reactants are what you put into a reaction (the things that react)
Products are the things that come out of a reaction (the things that are produced)