Nine plus a unknown number equals unknown.
Euclidean geometry is all about shapes, lines, and angles and how they interact with each other. There is a lot of work that must be done in the beginning to learn the language of geometry. Once you have learned the basic postulates and the properties of all the shapes and lines, you can begin to use this information to solve geometry problems. Unfortunately, geometry takes time, but if you put in the effort, you can understand it.
Answer:
1
Step-by-step explanation:
If you are just looking for the derivative, then all you need to use the power rule for this. Technically the x in (x-9) has a power to the 1, so really x^1-9. To use power rule, you bring down the exponent, in this case, 1, and then minus 1 from what the exponent was.
1x^(1-1) = 1x^0. The derivative of any constant is 0, so don't even worry about the -9. We know that anything raised to the zero is just 1, so in this case your answer is 1.
Hope this helps :)
Answer:
<u>Given function</u>
#15 Find the inverse of h(x)
<u>Substitute x with y and h(x) with x and solve for y:</u>
- x = 2y - 1
- 2y = x + 1
- y = 1/2x + 1/2
<u>The inverse is:</u>
#16 The graph with both lines is attached.
The x- and y-intercepts of both functions have reversed values.
#17 Table of the inverse function will contain same numbers with swapped domain and range.
<u>Initial look is like this:</u>
- <u>x | -3 | -2 | -1 | 0 | 1 | 2 | 3</u>
- h⁻¹(x) | -1 | | 0 | | 1 | | 2
<u>The rest of the table is filled in by finding the values:</u>
- <u>x | -3 | -2 | -1 | 0 | 1 | 2 | 3</u>
- h⁻¹(x) | -1 | -0.5 | 0 | 0.5 | 1 | 1.5 | 2