Answer:
m1/m2 = 0.51
Explanation:
First to all, let's gather the data. We know that both rods, have the same length. Now, the expression to use here is the following:
V = √F/u
This is the equation that describes the relation between speed of a pulse and a force exerted on it.
the value of "u" is:
u = m/L
Where m is the mass of the rod, and L the length.
Now, for the rod 1:
V1 = √F/u1 (1)
rod 2:
V2 = √F/u2 (2)
Now, let's express V1 in function of V2, because we know that V1 is 1.4 times the speed of rod 2, so, V1 = 1.4V2. Replacing in the equation (1) we have:
1.4V2 = √F/u1 (3)
Replacing (2) in (3):
1.4(√F/u2) = √F/u1 (4)
Now, let's solve the equation 4:
[1.4(√F/u2)]² = F/u1
1.96(F/u2) =F/u1
1.96F = F*u2/u1
1.96 = u2/u1 (5)
Now, replacing the expression of u into (5) we have the following:
1.96 = m2/L / m1/L
1.96 = m2/m1 (6)
But we need m1/m2 so:
1.96m1 = m2
m1/m2 = 1/1.96
m1/m2 = 0.51
Answer: 39.2 m/s
Explanation:
You can use the kinematic equation:

We know the final velocity because it says it came to a stop. So now all we gotta do is plug in.

Answer:
<em>2.753*10^-11N</em>
Explanation:
According to Newton's law of gravitation, the force between the masses is expressed as;
F = GMm/d²
M and m are the distances
d is the distance between the masses
Given
M = 3.71 x 10 kg
m = 1.88 x 10^4 kg
d = 1300m
G = 6.67 x 10-11 Nm²/kg
Substitute into the formula
F = 6.67 x 10-11* (3.71 x 10)*(1.88 x 10^4)/1300²
F = 46.52*10^(-6)/1.69 * 10^6
F = 27.53 * 10^{-6-6}
F = 27.53*10^{-12}
F = 2.753*10^-11
<em>Hence the gravitational force between the asteroid is 2.753*10^-11N</em>
<em></em>