Impulse = Ft = (m)(delta v)
delta v = change in velocity = velocity final - velocity initial.
= -22m/s - +18m/s = -40m/s.
mdeltav = (0.40kg)(-40m/s) = -16kgm/s or -16Ns.
Using the addition of forces using right angled triangles. The resultant force sqaured. = 112.8 sqaured + 52.6 squared. So resultant force sqaured is 15490.6. So the resultant force is the sqaure root of this which is 124N to 3 significant figures
Answer:
conserved
Explanation:
During this process the energy is conserved
Answer:
the rate of heat transfer after the system achieves steady state is -3.36 kW
Explanation:
Given the data in the question;
mass of water m = 50 kg
N = 300 rpm
Torque T = 0.1 kNm
V = 110 V
I = 2 A
Electric work supplied W₁ = PV = 2 × 110 = 220 W = 0.22 kW
Now, work supplied by paddle wheel W₂ is;
W₂ = 2πNT/60
W₂ = (2π × 0.1 × 300) / 60
W₂ = 188.495559 / 60
W₂ = 3.14 kW
So the total work will be;
W = 0.22 + 3.14
W = 3.36 kW
Hence total work done on the system is 3.36 kW.
At steady state, the properties of the system does not change so the heat transfer will be 3.36 KW.
The heat will be rejected by the system so the sign of heat will be negative.
i.e Q = -3.36 kW
Therefore, the rate of heat transfer after the system achieves steady state is -3.36 kW
Answer:
Cold Front 3 // Stationary Front 1 // Warm Front 2 // Occluded Front 4
Explanation:
It's simple. Warm front means the warm air is pressing forward, which is why it's a warm front. Stationary Front, meaning they're at a standstill, also makes sense because stationary means not moving. Then since your last option is Occluded Front, since the others already have an answer, you have no choice but to match 4 with it. I took the quiz and got the answer right. :D