Given:
Total number of problems = 24
Michael completed
of his homework in
of an hour.
To find:
What fraction of his homework would he complete in one hour.
Solution:
We have,
Part of work done in
of an hour 
Part of work done in an hour 

Therefore, he complete
of his homework in 1 hour. Hence, all options are incorrect.
Solving the given inequality for d, we get...
6d + 15 < 50
6d + 15-15 < 50-15 <<-- subtract 15 from both sides
6d < 35
6d/6 < 35/6 <<--- divide both sides by 6
d < 5.83
Which means that d can be any of the values in this set: {0, 1, 2, 3, 4, 5}
The smallest d can be is 0. In this scenario, Jeremy pays the $15 registration but doesn't rent the camera at all
The largest d can be is 5. In this scenario, Jeremy rents the camera for 5 days
Any larger value of d is not allowed as it would make the total cost go over $50
Notice how I'm rounding down regardless how close 5.83 is to 6
Answer:
a) 90 stamps
b) 108 stamps
c) 333 stamps
Step-by-step explanation:
Whenever you have ratios, just treat them like you would a fraction! For example, a ratio of 1:2 can also look like 1/2!
In this context, you have a ratio of 1:1.5 that represents the ratio of Canadian stamps to stamps from the rest of the world. You can set up two fractions and set them equal to each other in order to solve for the unknown number of Canadian stamps. 1/1.5 is representative of Canada/rest of world. So is x/135, because you are solving for the actual number of Canadian stamps and you already know how many stamps you have from the rest of the world. Set 1/1.5 equal to x/135, and solve for x by cross multiplying. You'll end up with 90.
Solve using the same method for the US! This will look like 1.2/1.5 = x/135. Solve for x, and get 108!
Now, simply add all your stamps together: 90 + 108 + 135. This gets you a total of 333 stamps!
Answer:
1. ![(\sqrt[5]{(m+2)})^{3} = (m+2)^{\frac{3}{5}}](https://tex.z-dn.net/?f=%28%5Csqrt%5B5%5D%7B%28m%2B2%29%7D%29%5E%7B3%7D%20%3D%20%20%28m%2B2%29%5E%7B%5Cfrac%7B3%7D%7B5%7D%7D)
2. ![(\sqrt[3]{(m+2)})^{5} = (m+2)^{\frac{5}{3}}](https://tex.z-dn.net/?f=%28%5Csqrt%5B3%5D%7B%28m%2B2%29%7D%29%5E%7B5%7D%20%3D%20%20%28m%2B2%29%5E%7B%5Cfrac%7B5%7D%7B3%7D%7D)
3. ![\sqrt[5]{(m)}^{3}+2 = m^{\frac{3}{5}}+2](https://tex.z-dn.net/?f=%5Csqrt%5B5%5D%7B%28m%29%7D%5E%7B3%7D%2B2%20%3D%20%20m%5E%7B%5Cfrac%7B3%7D%7B5%7D%7D%2B2)
4. ![\sqrt[3]{(m)}^{5}+2 = m^{\frac{5}{3}}+2](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B%28m%29%7D%5E%7B5%7D%2B2%20%3D%20%20m%5E%7B%5Cfrac%7B5%7D%7B3%7D%7D%2B2)
Step-by-step explanation:
Recall that
![(\sqrt[n]{x})^{m} = (x^{\frac{m}{n}})](https://tex.z-dn.net/?f=%28%5Csqrt%5Bn%5D%7Bx%7D%29%5E%7Bm%7D%20%3D%20%20%28x%5E%7B%5Cfrac%7Bm%7D%7Bn%7D%7D%29)
Where
is called radicand and n is called index
1. Root(5, (m + 2) ^ 3)
In this case,
n is 5
m is 3
x = (m + 2)
![(\sqrt[5]{(m+2)})^{3} = (m+2)^{\frac{3}{5}}](https://tex.z-dn.net/?f=%28%5Csqrt%5B5%5D%7B%28m%2B2%29%7D%29%5E%7B3%7D%20%3D%20%20%28m%2B2%29%5E%7B%5Cfrac%7B3%7D%7B5%7D%7D)
2. Root(3, (m + 2) ^ 5)
In this case,
n is 3
m is 5
x = (m + 2)
![(\sqrt[3]{(m+2)})^{5} = (m+2)^{\frac{5}{3}}](https://tex.z-dn.net/?f=%28%5Csqrt%5B3%5D%7B%28m%2B2%29%7D%29%5E%7B5%7D%20%3D%20%20%28m%2B2%29%5E%7B%5Cfrac%7B5%7D%7B3%7D%7D)
3. Root(5, m ^ 3) + 2
In this case,
n is 5
m is 3
x = m
![\sqrt[5]{(m)}^{3}+2 = m^{\frac{3}{5}}+2](https://tex.z-dn.net/?f=%5Csqrt%5B5%5D%7B%28m%29%7D%5E%7B3%7D%2B2%20%3D%20%20m%5E%7B%5Cfrac%7B3%7D%7B5%7D%7D%2B2)
4. Root(3, m ^ 5) + 2
In this case,
n is 3
m is 5
x = m
![\sqrt[3]{(m)}^{5}+2 = m^{\frac{5}{3}}+2](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B%28m%29%7D%5E%7B5%7D%2B2%20%3D%20%20m%5E%7B%5Cfrac%7B5%7D%7B3%7D%7D%2B2)