<span>The zero of a function is a value of x that makes the value of function equal to zero. </span>
Answer:
To determine its end behavior, look at the leading term of the polynomial function. Because the power of the leading term is the highest, that term will grow significantly faster than the other terms as x gets very large or very small, so its behavior will dominate the graph. For any polynomial, the end behavior
Step-by-step explanation:
4/6 is the answers
Hope you get the answer right
Answer:
Step-by-step explanation:
Find two linear functions p(x) and q(x) such that (p (f(q(x)))) (x) = x^2 for any x is a member of R?
Let p(x)=kpx+dp and q(x)=kqx+dq than
f(q(x))=−2(kqx+dq)2+3(kqx+dq)−7=−2(kqx)2−4kqx−2d2q+3kqx+3dq−7=−2(kqx)2−kqx−2d2q+3dq−7
p(f(q(x))=−2kp(kqx)2−kpkqx−2kpd2p+3kpdq−7
(p(f(q(x)))(x)=−2kpk2qx3−kpkqx2−x(2kpd2p−3kpdq+7)
So you want:
−2kpk2q=0
and
kpkq=−1
and
2kpd2p−3kpdq+7=0
Now I amfraid this doesn’t work as −2kpk2q=0 that either kp or kq is zero but than their product can’t be anything but 0 not −1 .
Answer: there are no such linear functions.
Ab= 28
(bc)^3= -42875
-3c^2= 225
I hope it's right..