E=hf C=wavelength*F
E=hC/wavelength
E=(6.626*10^-34)*(3.00*10^8)/670*10^-9
E=(6.626*10^-34)*(3.00*10^8)/450*10^-9
We take the derivative of Ohm's law with respect to time: V = IR
Using the product rule:
dV/dt = I(dR/dt) + R(dI/dt)
We are given that voltage is decreasing at 0.03 V/s, resistance is increasing at 0.04 ohm/s, resistance itself is 200 ohms, and current is 0.04 A. Substituting:
-0.03 V/s = (0.04 A)(0.04 ohm/s) + (200 ohms)(dI/dt)
dI/dt = -0.000158 = -1.58 x 10^-4 A/s
The speed of sound at

is approximately v=343 m/s. The distance covered by the sound wave is

And the time it takes is

Now we want to find how far the light travels during this time. Light travels at speed

, therefore the distance it covers during this time is
ANSWER
A convex lens acts a lot like a concave mirror. ... A concave lens acts a lot like a convex mirror. Both diverge parallel rays away from a focal point, have negative focal lengths, and form only virtual, smaller images.