Acceleration x time = velocity
Since you're given acceleration and time, just plug the values into the equation.
3

x 1.1 s = ?
Solve that equation, and remember your velocity should be in m/s.
Answer:
-2.26×10^-4 radians
Explanation:
The solution involves a right angle triangle
Length is z while the horizontal is the height x
X^2+ 100^2=z^2
Taking the derivatives
2x(dx/dt)=Z^2(dz/dt)
Specific moments = Z= 200 ,X= 100sqrt3 and dx/dt= 11
dz/dt= 1100sqrt3/200 = 9.53
Sin a= 100/a
Taking derivatives in terms of t
Cos a(da/dt)=100/z^2 dz/dt
a= 30°
Cos (30°)da/dt= (-100/40000×9.5)
a= -2.26×10^-4radians
Using the pressure law (P1 x V1)/ T1 = (P2 x V2)/ T2 where P1= the initial pressure V1= initial volume T1= initial temperature and P2= the final pressure V2= the final volume T2 = the final temperature and temperature is always in kelvin
Answer
a) Using dimensional analysis we cannot derive the relation, But we can check the correctness of the formula.

now, L H S
s = distance
dimension of distance = [M⁰L¹T⁰]
now, equation on the right hand side
R H S
u = speed
u = m/s
Dimension of speed = [M⁰L¹T⁻¹]
dimension of time
t = sec
Dimension of time = [M⁰L⁰T¹]
Dimension of 'ut' = [M⁰L¹T⁻¹][M⁰L⁰T¹]
= [M⁰L¹T⁰]
now, acceleration= a
a = m /s²
dimension of acceleration = [M⁰L¹T⁻²]
dimension of (at²) = [M⁰L¹T⁻²][M⁰L⁰T¹][M⁰L⁰T¹]
= [M⁰L¹T⁰]
hence, the dimension are balanced.
so, L H S = R H S
b) Moment of inertia of hollow sphere = 
Moment of inertia of solid sphere = 
we know,


Torque is the force that causes rotation
If the same amount of torque is applied to both spheres the sphere with bigger moment of inertia would have smaller angular velocity.
Thus the solid sphere would accelerate more.