Answer:
The estimate of a population proportion is approximately 541.
Step-by-step explanation:
We can solve the the problem by using the formula for minimum sample needed for interval estimate of a population proportion which is given by the formula
n = pq ((Z/2) / E)^2
As, p is not defined so we use the standard p and q which is 0.5 and 0.5.
The reason for this is we have to choose form 0.1 to 0.9 both values of p and q, we will find the maximum value of pq occurs when they both are 0.5.
Next, we will find the value of (Z/2) by looking at the Z-table, we will find that at 98% confidence (Z/2) = 2.326. Now we start substituting the values in the above formula
n = (0.5)×(0.5) × (2.326/0.05)^2
n = 541.027
n ≅ 541.
Answer:
(1,4)
Step-by-step explanation:
if u substitute these numbers u can find out that these numbers make the solution.
hope this helps
Answer:
I think its - 2/3
Step-by-step explanation:
Amp is the number in front of sine so its 1/2 aka D :)
m x H = ![\left[\begin{array}{ccc}-25&37.5&-12.5\\\9\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-25%2637.5%26-12.5%5C%5C%5C9%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
Step 1; Multiply 5 with this matrix
and we get a matrix ![\left[\begin{array}{ccc}-5&10\\20&40\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-5%2610%5C%5C20%2640%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Multiply the fraction
with the matrix
and we get ![\left[\begin{array}{ccc}-\frac{2m}{5} &\frac{4m}{5} \\\frac{8m}{5} &\frac{16m}{5} \\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-%5Cfrac%7B2m%7D%7B5%7D%20%26%5Cfrac%7B4m%7D%7B5%7D%20%5C%5C%5Cfrac%7B8m%7D%7B5%7D%20%26%5Cfrac%7B16m%7D%7B5%7D%20%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Step2; Now equate corresponding values of the matrices with each other.
-5 =
and so on. By equating we get the value of m as 
Step 3; Add the matrices to get the value of matrix m.
Adding the three matrices on the RHS we get
.
Step 4; Adding the matrices on the LHS we get the resulting matrix as H +
. Equating the matrices from step 3 and 4 we get the value of H as ![\left[\begin{array}{ccc}-2&3&-1\\\9\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%263%26-1%5C%5C%5C9%5Cend%7Barray%7D%5Cright%5D)
Step 5; Now to find the value of m x H we need to multiply the value of
with the matrix
Step 6; Multiplying we get the matrix m x H = [ -25
]