Ax + c = R (subtract c from each side)
Ax + c - c = R - c
Ax = R - c (divide A from each side)
Ax/A = (R-c)/A
x = ![\frac{R-c}{A}](https://tex.z-dn.net/?f=%20%5Cfrac%7BR-c%7D%7BA%7D%20)
<-answer
by the use of elimination method
make all coefficients of subject to be eliminated similar..by multiplying the coefficients with one another
for eqn(i)
5(-10y+9x=-9)
-50y+45x=-45
for eqn(ii)
9(10y+5x=-5)
90y+45x=-45
-50y+45x=-45
90y+45x=-45
...subtract each set from the other...
we get
-140y+0=0
y=0
from eqn(i)
10y+5x=-5
0+5x=-5
x= -1
A. Area of ABCD - Area of DGA = Area of DEFG
s^2 - 1/2bh = s^2
(5)^2 - 1/2(4)(3) = (3)^2
25 - 1/2(12) = 9
25 - 24 = 9
1 not equal to 9
B. Area of ABCD - Area of GHIA = Area of DGA
s^2 - s^2 = 1/2bh
(5)^2 - (4)^2 = 1/2(4)(3)
25 - 16 = 1/2(12)
9 not equal to 6
C. Area of ABCD + Area of DGA = Area of GHIA
s^2 + 1/2bh = s^2
(5)^2 + 1/2(4)(3) = (4)^2
25 + 1/2(12) = 16
25 + 6 = 16
31 not equal to 16
D. Area of DEFG + Area of GHIA = Area of ABCD
s^2 + s^2 = s^2
(3)^2 + (4)^2 = (5)^2
9 + 16 = 25
25 = 25
The answer is D.
(x4−3x3+4x2−8)/(x+1) = x3−4x2<span>+8x−8.</span>
Answer:
80.7 because you multiply