Dominant' traits will actually disappear faster if they are disadvantageous.
Think about it: if everyone who has even a single copy of a particular allele is at a disadvantage (manifests the phenotype, in this case six fingers), then even single copies are selected against.
In the case of recessive traits, selection occurs only against homozygous carriers, who may be very rare if the allele itself is rare.
A concrete example would be something like Tay-Sachs disease. If the allele that causes this were dominant, every carrier would die before adulthood, and it would occur only as a very rare de novo mutation. But because it is recessive, it persists for now; heterozygous carriers have no disadvantage.
Answer: Tightly wound chromosomes, composed of DNA, must unwind before replication. Cell replication splits a cell into two parts, both of which become new, fully functioning cells. Before this can happen, however, cells require a full complement of DNA for each of the new daughter cells that will form as a result of the split. Because of this, DNA makes a copy of itself in a process known as replication during interphase, a stage that occurs before cells divide.
Cell Phases: Mitosis is the process by which parent cells each divide into two identical daughter cells. However, this majority of the cell's time is spent in interphase, during which it performs normal metabolic functions necessary for the organism, such as manufacturing protein. DNA occurs during the S phase of interphase, sandwiched between the G1 and G2 phases. The cell uses checkpoint signals to ensure at the end of G1 that it is big enough to replicate and at the end of G2 to determine whether or not DNA replication has succeeded. If so, the cell can undergo mitosis, at which point DNA winds up tightly for easy transport during the process.
DNA Replication: Replication begins with DNA unwinding and unzipping, its two strands coming apart. While only one side is the “correct” code, containing the actual genetic information used to build the organism’s proteins, both can be the base for a new strand of complete DNA. The enzyme DNA polymerase matches up each base with the correlating base: adenine with thymine and guanine with cytosine. When each pre-existing base has been matched to a nucleotide, which also contains the sugar and phosphate of the DNA’s backbone, the strand is complete.
Answer:
B
Explanation:
Crossing over is the process involved during meiosis of two chromosomes sharing genetic information with each other from each parent. This happens so the two daughter cells or sister chromatids have a variety of genetic information and so they are not completely identical. This leads to genetic diversity or variation.
Means they are related through a common distant ancestor. This shows that these structures (morphology) are homologous. They all have 7 neck (cervical) vertebrae, but giraffes cervical vertebrae are elongated compared to that of humans due to their adaptation as browsers .
Nucleotides.
ALSO you should listen to DNA by bts ❤️