When light is reflected by a mirror, the angle of incidence is always <span>A. equal to the angle of reflection. We know this by the Law of Reflection.</span>
Answer:
The cornea of an eye is avascular
Explanation:
The healing process in case of a cornea transplant is slow, because the cornea is of an eye is avascular, i.e., it does not contain blood vessels and in the absence of the blood vessels in the cornea tissue the nutrients and oxygen is not able to get delivered there.
Thus the immune system, without the blood vessels in the cornea is weak and hence healing takes time in case of cornea transplant.
Answer:
Just consider the resistance as water flowing through a pipe. If the pipe is too small in radius (consider thin wire as small pipe) water can’t flow easly. If the pipe is big in radius (consider thick wire as big pipe) water can flow easly. So flowing water through a small pipe for a long distance will inversly affect the normal flow where as flowing water through a big pipe for a small distance will not affect too much the normal flow.
So long & thin wire has high resistance. Short & thick wire has low resistance.
B. A wire that is 2 m long and has a cross-sectional area of 0.066
Before we find impulse, we need to find the initial and final momentum of the ball.
To find the momentum of the ball before it hit the floor, we need to figure out its final velocity using kinematics.
Values we know:
acceleration(a) - 9.81m/s^2 [down]
initial velocity(vi) - 0m/s
distance(d) - 1.25m [down]
This equation can be used to find final velocity:
Vf^2 = Vi^2 + 2ad
Vf^2 = (0)^2 + (2)(-9.81)(-1.25)
Vf^2 = 24.525
Vf = 4.95m/s [down]
Now we need to find the velocity the ball leaves the floor at using the same kinematics concept.
What we know:
a = 9.81m/s^2 [down]
d = 0.600m [up]
vf = 0m/s
Vf^2 = Vi^2 + 2ad
0^2 = Vi^2 + 2(-9.81)(0.6)
0 = Vi^2 + -11.772
Vi^2 = 11.772
Vi = 3.43m/s [up]
Now to find impulse given to the ball by the floor we find the change in momentum.
Impulse = Momentum final - momentum initial
Impulse = (0.120)(3.43) - (0.120)(-4.95)
Impulse = 1.01kgm/s [up]
Explanation:
I think it's c but not sure