1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AlexFokin [52]
3 years ago
15

A paper airplane with mass 0.1 kg is flying 1.5 m above the ground with a speed of 2 m/s. what is the total mechanical energy of

the paper airplane?
Physics
1 answer:
Drupady [299]3 years ago
3 0
Mechanical(ME) energy, in physical sciences, is the sum of kinetic energy (KE) and potential energy (PE). Below are the calculation in obtaining the energies,
 
     (1) KE =   0.5mv²     =  0.5(0.1 kg) x (2 m/s)² = 0.2 J
     (2) PE =    md          = (0.1 kg) x (1.5 m)        = 0.15 J
      (3) ME =  KE + PE = 0.2 J + 0.15 J               = 0.35 J

Thus, the mechanical energy is 0.35 Joules. 

You might be interested in
Point charges q1=+2.00μC and q2=−2.00μC are placed at adjacent corners of a square for which the length of each side is 5.00 cm.
8_murik_8 [283]

The electric potential is a scalar unit, so we don't have to struggle with the vectors. The formula that gives electric potential is

V = \frac{1}{4\pi\epsilon_0}\frac{q}{r}

1) At point a, the electric potential is the sum of the potentials due to q1 and q2. So,

V_a = \frac{1}{4\pi\epsilon_0}\frac{q_1}{r_1} + \frac{1}{4\pi\epsilon_0}\frac{q_2}{r_2}

The distance from the center of the square to one of the corners is \sqrt2 L/2 = 0.035m

V_a = \frac{1}{4\pi\epsilon_0}\frac{2\times10^{-6}}{0.035} + \frac{1}{4\pi\epsilon_0}\frac{-2\times10^{-6}}{0.035} = 0

The answer is zero, because the point charges are at equal distances and their magnitudes are also equal but their directions are opposite.

2) V_b = \frac{1}{4\pi\epsilon_0}\frac{q_1}{r_1} + \frac{1}{4\pi\epsilon_0}\frac{q_2}{r_2}

r_1 = 0.05\sqrt2m\\r_2 = 0.05m

V_b = \frac{1}{4\pi\epsilon_0}\frac{2\times10^{-6}}{0.05\sqrt2} + \frac{1}{4\pi\epsilon_0}\frac{-2\times10^{-6}}{0.05}\\V_b = \frac{1}{4\pi\epsilon_0}\frac{2\times10^{-6}}{0.05} (\frac{1}{\sqrt2}-1)\\V_b = \frac{1}{4\pi\epsilon_0} (4\times 10^{-5})(-0.29)\\V_b = (-\frac{2.9\times10^{-6}}{\pi\epsilon_0})[tex]3) The work done on q3 by q1 and q2 is equal to the difference between  energies. This is the work-energy theorem. So,[tex]W = U_b - U_a

U = \frac{1}{4\pi\epsilon_0}\frac{q_1q_3}{r} = Vq_3

W = q_3(V_b - V_a) = q_3(V_b - 0)\\W = (-2\times10^{-6})(-\frac{2.9\times10^{-6}}{\pi\epsilon_0})\\W = \frac{5.8\times10^{-12}}{\pi\epsilon_0}

4 0
3 years ago
A block of mass 0.221 kg is placed on top of a light, vertical spring of force constant 5365 N/m and pushed downward so that the
Anvisha [2.4K]

Answer:

The maximum height above the point of release is 11.653 m.

Explanation:

Given that,

Mass of block = 0.221 kg

Spring constant k = 5365 N/m

Distance x = 0.097 m

We need to calculate the height

Using stored energy in spring

U=\dfrac{1}{2}kx^2...(I)

Using gravitational potential energy

U' =mgh....(II)

Using energy of conservation

E_{i}=E_{f}

U_{i}+U'_{i}=U_{f}+U'_{f}

\dfrac{1}{2}kx^2+0=0+mgh

h=\dfrac{kx^2}{2mg}

Where, k = spring constant

m = mass of the block

x = distance

g = acceleration due to gravity

Put the value in the equation

h=\dfrac{5365\times(0.097)^2}{2\times0.221\times9.8}

h=11.653\ m

Hence, The maximum height above the point of release is 11.653 m.

3 0
3 years ago
A planet has a period of revolution about the Sun equal to and a mean distance from the Sun equal to R .T^2 varies directly as _
shutvik [7]

T² caries directly as R³ .

This is Kepler's 3rd law of planetary motion .
4 0
3 years ago
The argument against your claim (what the other side would say if they disagreed with your claim.) is:
Vlad1618 [11]

Answer:

a counterclaim

Explanation:

authors purpose is what an author wrote somthing for

opinion is someones thoughts or "side" on a argument

an arguement is a battle of opinions if that makes sense

3 0
3 years ago
A man does 4,475 J of work in the process of pushing his 2.50 103 kg truck from rest to a speed of v, over a distance of 26.0 m.
Tcecarenko [31]

Answer:

a) 1.89 m/s  b) 172.1 N

Explanation:

a)

  • Applying the work-energy theorem, if we can neglect the friction between truck and road, the total change in kinetic energy must be equal to the work done by the external forces.
  • This work, is just 4,475 J.
  • So we can write the following equation:

        \Delta K = \frac{1}{2} * m*v^{2} = 4,475 J

  • where m= mass of the truck = 2.5*10³ kg.
  • So, we can find the speed v, as follows:

        v =\sqrt{\frac{2*W}{m}} =\sqrt{\frac{2*4,475J}{2.5e3kg} }  = 1.89 m/s

b)

  • The work done by the man, is just the horizontal force applied, times the displacement produced by the force horizontally:

        W = F*d

  • We can solve for F, as follows:

        F = \frac{W}{d} = \frac{4,475 J}{26.0m} =  172.1 N

4 0
3 years ago
Other questions:
  • A ferris wheel has a radius of 36 feet and completes one revolution every 5.4 minutes. what is the speed of the ferris wheel (in
    5·1 answer
  • A wooden log of density 2g/cm3 and volume 50 cm3 fall on the surface of water. Calculate its buoyant force.
    14·1 answer
  • A certain sprinter has a top speed of 10.5 m/s. If the sprinter starts from rest and accelerates at a constant rate, he is able
    5·1 answer
  • Which object has the greatest acceleration
    14·1 answer
  • An air capacitor is made by using two flat plates, each with area A, separated by a distance d. Then a metal slab having thickne
    6·1 answer
  • A pendulum oscillates 50 times in 6 seconds. Find its time period and frequency? ​
    6·1 answer
  • ILL GIVE BRAINLIST PLS In which circuit does charge reverse direction many times per second?
    15·1 answer
  • Which 4 human activities are the biggest contributors to Climate Change?
    14·1 answer
  • Estimate the force a person must exert on a massless string attached to a 0.15 kg ball to make the ball revolve in horizontal ci
    10·1 answer
  • Which measuring tool should be used to measure the diameter of a soda can?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!