1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ksju [112]
4 years ago
11

Once broken into parts curved motion can be worked as ________________ problems along both axes.

Physics
1 answer:
vovikov84 [41]4 years ago
8 0

Answer:

projectile motion

Explanation:

i am not sure sorry

You might be interested in
the particles that make up a rock are constantly in motion however a rock does not visibly vibrate. why do you think this?
Ivahew [28]

I think this is because the particles don't know or care about each other,
and they act completely without any peer pressure.  The direction in which
any one particle vibrates is completely random, and there is no connection
or influence among the particles. That means that any direction is just as likely
as any other direction for the next vibration, and they all wind up vibrating in
different directions.  There is a tiny tiny tiny tiny chance that all of them could
vibrate in the same direction for just an instant; if that ever happened, the rock
would suddenly jump up in the air.  That's actually true, but the chance is so tiny
that it hasn't ever happened yet.  In fact, the chance is so tiny, that when scientists
do their calculations of particle vibrations, they assume that the chance is zero,
and that makes the calculations simpler.

3 0
3 years ago
In a particular experiment to study the photoelectric effect, the frequency of the incident light and the temperature of the met
Molodets [167]

Answer:

The number of electrons emitted from the metal per second increases.

Explanation:

The photoelectric effect can be explained by thinking the incident light as made of many photons, each carrying an energy of

E=hf

where h is the Planck constant and f is the light frequency. A photoelectron is extracted from the metal if the energy of the incoming photon, which hits the electron and gives all its energy, is at least equal to the work function of the metal, \phi. Moreover, each photon of the incident light hits only one electron in the metal.

Given these premises, we can analyze each statement:

The work function of the metal decreases.   --> FALSE. The work function is just the energy needed to extract photoelectrons from the metal: so, it depends only on the properties of the metal, and not on the intensity of the incident light.

The number of electrons emitted from the metal per second increases.   --> TRUE. The intensity of the incident light is proportional to the number of photons contained in the light: so, the higher the intensity, the larger the number of photons that hit the electrons in the metal, the larger the number of electrons emitted.

The maximum speed of the emitted electrons increases.   --> FALSE. The energy of the electrons emitted depends ONLY on the energy of the incoming photon, so it depends only on the frequency of the photon, not on the number of photon (intensity). In fact, only 1 photon at time hits 1 electron, so the intensity of the light does not affect the energy of the electrons (and so, it does not affect their speed)

The stopping potential increases. --> FALSE. The stopping potential is the potential needed to stop the electrons in the metal preventing them to escape the metal: this depends only on the energy of the electron, which does not depend on the intensity of the light, but only on its frequency.

4 0
3 years ago
The natural process where the sun's energy is trapped by the atmosphere to make the Earth warm enough for life is known as
Citrus2011 [14]
I think something like radiation
8 0
4 years ago
Read 2 more answers
Power Rating of a Resistor. The power rating of a resistor is the maximum power the resistor can safely dissipate without too gr
IgorLugansk [536]

(a) 273.9 V

The power rating of the resistor is given by

P=\frac{V^2}{R}

where

P is the power rating

V is the potential difference across the resistor

R is the resistance

If the maximum power rating is P=5.0 W, and the resistance of the resistor is R=15 k\Omega = 15000 \Omega, then we can find the maximum potential difference across the resistor by re-arranging the previous equation for V:

V=\sqrt{PR}=\sqrt{(5.0 W)(15000 \Omega)}=273.9 V

(b) 1.6 W

In this case, we have:

R=9.0 k\Omega = 9000 \Omega is the resistance of the resistor

V=120 V is the potential difference across the resistor

So we can find the power rating by using the same formula of part (a):

P=\frac{V^2}{R}=\frac{(120 V)^2}{9000 \Omega}=1.6 W

(c) Maximum voltage: 14.1 V; Rate of heat: 2.00 W and 3.00 W

Here we have two resistors of

R_1 = 100 \Omega\\R_2 = 150 \Omega

and each resistor has a power rating of

P = 2.00 W

So the greatest potential difference allowed in the first resistor is

V=\sqrt{PR_1}=\sqrt{(2.00 W)(100 \Omega)}=14.1 V

While the greatest potential difference allowed in the second resistor is

V=\sqrt{PR_2}=\sqrt{(2.00 W)(150 \Omega)}=17.3 V

So the greatest potential difference allowed not to overheat either of the resistor is 14.1 V.

In this condition, the power dissipated on the first resistor is 2.00 W, while the power dissipated on the second resistor is

P_2 = \frac{V^2}{R_2}=\frac{(14.1 V)^2}{150 \Omega}=1.33 W

And this corresponds to the rate of heat generated in the first resistor (2.00 W) and in the second resistor (1.33 W).

4 0
3 years ago
How can you determine that a coin
OleMash [197]

Answer:

by checking if its malleble with a hammer

Explanation:

8 0
3 years ago
Other questions:
  • Copper has a specific heat of 0.386 J/g°C. How much heat is required to increase 5.00 g of copper from 0.0°C to 10.0°C?
    13·2 answers
  • How do you make the chemical equations LiOH+H2(SO4) and H2O+Li2(SO4) balanced?
    11·1 answer
  • Give an example of an energy conversion that produces an enwanted from of energy
    10·1 answer
  • The maximum amount of work that can be extracted is equal to the changein Gibbs free energy___________.
    8·1 answer
  • Help and thanks in advanced
    14·1 answer
  • A single-turn circular loop of wire that has a radius of 3.5 cm lies in the plane perpendicular to a spatially uniform magnetic
    9·1 answer
  • The magnitude of the Poynting vector of a planar electromagnetic wave has an average value of 0.939 W/m^2 . The wave is incident
    11·1 answer
  • Wat's the definition of microwave spectroscopy
    9·1 answer
  • Which descriptions did you include in your response? Check all that apply. The shape of the bowling ball is round. The color of
    12·1 answer
  • 8/10
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!