Answer: Temperature
Explanation: Temperature is a measure of average kinetic energy of particles in an object. The hotter the substance, higher is the average kinetic energy of its constituent particles. When we heat a substance, the particles that constitute the substance gain some energy and begin to move faster.
Answer:
The options are not given, here are the options.
metal
a. Metal
b. a metalloid
c. a non-metal
d. a gas
The correct option is C.
Non metal
Explanation:
Henry should classify it as non metals because non metals are substances or elements that are poor conductors of heat and electricity they break easily I .e meaning they lack the ducibility of metals, meaning they cannot be stretched, they are brittle, they are not shiny and does not reflect light, they have high electronegativities that is they have atoms that can hold electrons to what they have.
Answer:
The energy absorbed in the first move is greater than the energy released in the second move
Explanation:
Electrons require (absorb) energy to move to a higher energy level when there is a large external heat source, the presence of an electric field or by colliding with other electrons
And the amount of energy absorbed by the electron is exactly equal to the change in the energy state between the initial energy level of the electron and the destination energy level
Therefore, given that the energy level of the electron at level 2 is higher than the energy level of the electron when at level 1, we have;
The difference in the energy level between level 4 and level 1 is greater than the difference in the energy level between level 4 and level 2 and more energy is absorbed and therefore, released when the electron moves from level 1 to level 4 than when the electron drops from level 4 to level 2.
The most likely result is that 'the energy absorbed in the first move is greater than the energy released in the second move'.
Answer:
123.5 kPa
Explanation:
P2=P1T2/T1
You can check this by knowing that P and T at constant V have a proportional relationship. Hence, this is correct.