Answer:
The angle of elevation of the ramp is 64.60°
Step-by-step explanation:
Given;
length of the ramp, L = 35 ft
distance of the platform to the foot of the ramp, d = 15 ft
The length of the ramp forms the hypotenuse side of this right angled triangle;
The angle of elevation of the ramp is in angle between the hypotenuse and adjacent side of the triangle.
Cos x = adjacent / hypotenuse
Cos x = 15 / 35
Cos x = 0.4286
x = Cos⁻¹ (0.4286)
x = 64.62
x = 64.60°
Therefore, the angle of elevation of the ramp is 64.60°
I believe this is J with a radius of 6
the formula for circumference is 2(pi)r so i just took the 12(pi) and divided it by 2, which left me with 6(pi), meaning that 6 would be the "r" in the situation
Answer:
x^2 +20x+100
Step-by-step explanation:
(x+10)^2
(x+10) (x+10)
FOIL
first:x*x = x^2
outer: x*10
Inner 10*x
last: 10*10 =100
Add them together
x^2+10x+10x+100
x^2 +20x+100
Step-by-step explanation:
<h3>
<em><u>2</u></em><em><u>-</u></em><em><u>3</u></em><em><u>=</u></em><em><u>0</u></em></h3>
<em><u>2</u></em><em><u>2</u></em><em><u>=</u></em><em><u>9</u></em>
<em><u>2</u></em><em><u>-</u></em><em><u>9</u></em><em><u>=</u></em><em><u>0</u></em>
<em><u>2</u></em><em><u>+</u></em><em><u>3</u></em><em><u>2</u></em><em><u>=</u></em><em><u>0</u></em>