1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Novosadov [1.4K]
3 years ago
13

X² + 4x from 5x² + x

Mathematics
1 answer:
diamong [38]3 years ago
7 0
That is,

(5x sq + x) - (x sq + 4x)

5x sq + x - (x sq + 4x)

5x sq - x sq + x - 4x

4x sq - 3x
You might be interested in
What is 6=x over 8 for fractions
9966 [12]

Answer:

x = \frac{3}{4}

4 0
3 years ago
Read 2 more answers
What is the answer for 5÷27
valentinak56 [21]
.185, round to .19 04 .2

4 0
3 years ago
Read 2 more answers
Solve the following systems of equations using the matrix method: a. 3x1 + 2x2 + 4x3 = 5 2x1 + 5x2 + 3x3 = 17 7x1 + 2x2 + 2x3 =
lara [203]

Answer:

a. The solutions are

\left[\begin{array}{c}x_1&x_2&x_3\\\end{array}\right]=\begin{pmatrix}\frac{11}{13}\\ \frac{50}{13}\\ -\frac{17}{13}\end{pmatrix}

b. The solutions are

\left[\begin{array}{c}x&y&z\\\end{array}\right]=\begin{pmatrix}\frac{54}{235}\\ \frac{6}{47}\\ \frac{24}{235}\end{pmatrix}

c. The solutions are

\left[\begin{array}{c}x_1&x_2&x_3&x_4\\\end{array}\right]=\begin{pmatrix}\frac{22}{9}\\ \frac{164}{9}\\ \frac{139}{9}\\ -\frac{37}{3}\end{pmatrix}

Step-by-step explanation:

Solving a system of linear equations using matrix method, we may define a system of equations with the same number of equations as variables as:

A\cdot X=B

where X is the matrix representing the variables of the system,  B is the matrix representing the constants, and A is the coefficient matrix.

Then the solution is this:

X=A^{-1}B

a. Given the system:

3x_1 + 2x_2 + 4x_3 = 5 \\2x_1 + 5x_2 + 3x_3 = 17 \\7x_1 + 2x_2 + 2x_3 = 11

The coefficient matrix is:

A=\left[\begin{array}{ccc}3&2&4\\2&5&3\\7&2&2\end{array}\right]

The variable matrix is:

X=\left[\begin{array}{c}x_1&x_2&x_3\\\end{array}\right]

The constant matrix is:

B=\left[\begin{array}{c}5&17&11\\\end{array}\right]

First, we need to find the inverse of the A matrix. To find the inverse matrix, augment it with the identity matrix and perform row operations trying to make the identity matrix to the left. Then to the right will be inverse matrix.

So, augment the matrix with identity matrix:

\left[ \begin{array}{ccc|ccc}3&2&4&1&0&0 \\\\ 2&5&3&0&1&0 \\\\ 7&2&2&0&0&1\end{array}\right]

This matrix can be transformed by a sequence of elementary row operations to the matrix

\left[ \begin{array}{ccc|ccc}1&0&0&- \frac{2}{39}&- \frac{2}{39}&\frac{7}{39} \\\\ 0&1&0&- \frac{17}{78}&\frac{11}{39}&\frac{1}{78} \\\\ 0&0&1&\frac{31}{78}&- \frac{4}{39}&- \frac{11}{78}\end{array}\right]

And the inverse of the A matrix is

A^{-1}=\left[ \begin{array}{ccc} - \frac{2}{39} & - \frac{2}{39} & \frac{7}{39} \\\\ - \frac{17}{78} & \frac{11}{39} & \frac{1}{78} \\\\ \frac{31}{78} & - \frac{4}{39} & - \frac{11}{78} \end{array} \right]

Next, multiply A^ {-1} by B

X=A^{-1}\cdot B

\left[\begin{array}{c}x_1&x_2&x_3\\\end{array}\right]=\left[ \begin{array}{ccc} - \frac{2}{39} & - \frac{2}{39} & \frac{7}{39} \\\\ - \frac{17}{78} & \frac{11}{39} & \frac{1}{78} \\\\ \frac{31}{78} & - \frac{4}{39} & - \frac{11}{78} \end{array} \right] \cdot \left[\begin{array}{c}5&17&11\end{array}\right]

\left[\begin{array}{c}x_1&x_2&x_3\\\end{array}\right]=\begin{pmatrix}-\frac{2}{39}&-\frac{2}{39}&\frac{7}{39}\\ -\frac{17}{78}&\frac{11}{39}&\frac{1}{78}\\ \frac{31}{78}&-\frac{4}{39}&-\frac{11}{78}\end{pmatrix}\begin{pmatrix}5\\ 17\\ 11\end{pmatrix}=\begin{pmatrix}\frac{11}{13}\\ \frac{50}{13}\\ -\frac{17}{13}\end{pmatrix}

The solutions are

\left[\begin{array}{c}x_1&x_2&x_3\\\end{array}\right]=\begin{pmatrix}\frac{11}{13}\\ \frac{50}{13}\\ -\frac{17}{13}\end{pmatrix}

b. To solve this system of equations

x -y - z = 0 \\30x + 40y = 12 \\30x + 50z = 12

The coefficient matrix is:

A=\left[\begin{array}{ccc}1&-1&-1\\30&40&0\\30&0&50\end{array}\right]

The variable matrix is:

X=\left[\begin{array}{c}x&y&z\\\end{array}\right]

The constant matrix is:

B=\left[\begin{array}{c}0&12&12\\\end{array}\right]

The inverse of the A matrix is

A^{-1}=\left[ \begin{array}{ccc} \frac{20}{47} & \frac{1}{94} & \frac{2}{235} \\\\ - \frac{15}{47} & \frac{4}{235} & - \frac{3}{470} \\\\ - \frac{12}{47} & - \frac{3}{470} & \frac{7}{470} \end{array} \right]

The solutions are

\left[\begin{array}{c}x&y&z\\\end{array}\right]=\begin{pmatrix}\frac{54}{235}\\ \frac{6}{47}\\ \frac{24}{235}\end{pmatrix}

c. To solve this system of equations

4x_1 + 2x_2 + x_3 + 5x_4 = 0 \\3x_1 + x_2 + 4x_3 + 7x_4 = 1\\ 2x_1 + 3x_2 + x_3 + 6x_4 = 1 \\3x_1 + x_2 + x_3 + 3x_4 = 4\\

The coefficient matrix is:

A=\left[\begin{array}{cccc}4&2&1&5\\3&1&4&7\\2&3&1&6\\3&1&1&3\end{array}\right]

The variable matrix is:

X=\left[\begin{array}{c}x_1&x_2&x_3&x_4\\\end{array}\right]

The constant matrix is:

B=\left[\begin{array}{c}0&1&1&4\\\end{array}\right]

The inverse of the A matrix is

A^{-1}=\left[ \begin{array}{cccc} - \frac{1}{9} & - \frac{1}{9} & - \frac{1}{9} & \frac{2}{3} \\\\ - \frac{32}{9} & - \frac{5}{9} & \frac{13}{9} & \frac{13}{3} \\\\ - \frac{28}{9} & - \frac{1}{9} & \frac{8}{9} & \frac{11}{3} \\\\ \frac{7}{3} & \frac{1}{3} & - \frac{2}{3} & -3 \end{array} \right]

The solutions are

\left[\begin{array}{c}x_1&x_2&x_3&x_4\\\end{array}\right]=\begin{pmatrix}\frac{22}{9}\\ \frac{164}{9}\\ \frac{139}{9}\\ -\frac{37}{3}\end{pmatrix}

7 0
3 years ago
Read 2 more answers
Carlo and his two brothers helped to decorate the house for the party. Each of them blows 12 balloons. But 5 balloons pop. How m
kodGreya [7K]

Answer:

31

Step-by-step explanation:

thye blow up 36 balloons in total but 5 pop 36-5=31

4 0
2 years ago
The perimeter of a rectangle is 700 yards. What are the dimensions of the rectangle if the length is 50 yards more than the​ wid
Nataly [62]

Answer:

width = 150 yards

length = 200 yards

Step-by-step explanation:

Using the information given to us, we can make the following two equations:

2L + 2W = 700

L = W + 50

where L is the length in yards and W is the width in yards. This could treat these two equations as a system of linear equations. There are multiple ways to solve a system of linear equations, but I am going to solve this by substitution. Before doing that, I am first going to simplify the first equation, as it will make solving the system easier.

2L + 2W = 700

Divide both sides by 2.

L + W = 350

Since L = W + 50, we can substitute W + 50 for L in the equation L + W = 700.

(W + 50) + W = 350

2W + 50 = 350

2W = 300

W = 150

Now that we found what W is, we can solve for L by plugging 150 into either one of the equations. I am going to plug it into the equation L = W + 50.

L = 150 + 50

L = 200

Now we found what L is. So now we know that the width is 150 yards and the length is 200 yards.

I hope you find my answer and explanation helpful. Happy studying. :)

5 0
3 years ago
Other questions:
  • There are 9 members on a board of directors. If they must select a chairperson, a secretary, and a treasure, how many different
    9·1 answer
  • Solve the inequality 12(1/2x-1/3)>8-2x
    8·2 answers
  • Each year a store decreased the price of certain model of TV by $35.If the price in 2001 was $1,950,what was the price in 2009?
    9·1 answer
  • A square dinner napkin 8 inches on each side is folded along it's diagonal.find the area of the folded napkin
    7·1 answer
  • (-3x + 7) + (-6x + 9)
    5·2 answers
  • How do you take the derivative of 3x2 + x4?
    10·1 answer
  • Is the length of a rectangle always more than the width?
    14·2 answers
  • A random sample of 146 recent donations at a certain blood bank reveals that 81 were type A blood. Does this suggest that the ac
    13·1 answer
  • What is The prime factorization of <br> is 24 × 5.
    8·2 answers
  • Would this be true or false the question is The hexagon represents 1 whole. True or False: The pattern-block diagram below repre
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!