Let <em>v</em> be the object's volume. The object displaces 0.4<em>v</em> cm³ of water, which, at a density of about 0.997 g/cm³, has a weight of
<em>b</em> = (0.000997 kg/cm³) (0.4 <em>v</em> cm³) <em>g</em> ≈ 0.000391<em>v</em> N
(and <em>b</em> is also the magnitude of the buoyant force). Then the net force on the object while it's floating in water is
∑ <em>F</em> = <em>b</em> - <em>mg</em> = 0
so that <em>b</em> = <em>mg</em>, where <em>mg</em> is the object's weight. This weight never changes, so the object feels the same buoyant force in each liquid.
(a) In methanol, we have
<em>b</em> = 0.000391<em>v</em> N = (0.00079 kg/cm³) (<em>pv</em> cm³) <em>g</em>
where <em>p</em> is the fraction of the object's volume that is submerged. Solving for <em>p</em> gives
<em>p</em> = (0.000391 N) / ((0.00079 kg/cm³) <em>g</em>) ≈ 0.0505 ≈ 5.05%
(b) In carbon tetrachloride, we have
<em>b</em> = 0.000391<em>v</em> N = (0.00158 kg/cm³) (<em>pv</em> cm³) <em>g</em>
==> <em>p</em> ≈ 0.0253 ≈ 2.53%