1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ivann1987 [24]
3 years ago
15

Classify the animal hydra and plant mustard with two characters of each​

Physics
1 answer:
inna [77]3 years ago
4 0

Answer:

Mustard seeds, both white and brown, are nearly globular in shape, finely pitted, odourless when whole, and pungent-tasting

Image result for character of hydra

Introduction: Hydra are inconspicuous freshwater relatives of corals, sea anemones and jellyfish. All are members of the phylum Cnidaria, characterized by radially symmetrical bodies, presence of stinging tentacles and a simple gut with only one opening (gastrovascular cavity)

Explanation:

Hydra are a genus of small, fresh-water organisms that are classified under the phylum Cnidaria.the classification of mustard is

Dicotyledons

if my answer helps you than mark me as brainliest

You might be interested in
A car changes its speed by 2 meters per second each second. What is its acceleration?
KatRina [158]

Answer:

2 m/s²

Explanation:

If changes speed by 2 meters per second each second means:

2 m/s²

Because it changes constantly it veloctity.

Remember the aceleration changes the velocity.

4 0
3 years ago
Read 2 more answers
Am I correct?? Will give brainliest
IRISSAK [1]

You are correct earth science is studied to predict planetery changes


4 0
3 years ago
Read 2 more answers
How to convert acceleration to velocity.
Nana76 [90]

You can't. Velocity and acceleration measure two different things, so their units are incompatible. It's like asking, "How many meters does this book weigh?"

Maybe you mean "find" acceleration using given velocities, or a velocity function?

4 0
3 years ago
This question is related to inertia:
luda_lava [24]
The way I do it is suddenly, in the same sort of way that magicians try to pull a table cloth off a table when there's things on the table cloth.The sudden approach acts as an impulse of force and starts to accelerate the roll. But, the piece (assuming it has perforations) is off the roll before the roll can move, due to inertia. Then the roll will acclerate, move, slow down and stop. However, in accelerating, the roll will unravel. The bigger the impulse the more it will unravel.+++++++++++++++++++++++++++++++++++++++If on the other hand, the piece of paper is held firmly, and the roll is pulled, then the impulse is presumably given to the paper and the hand whose inertia is a lot more than that of the roll. So, I think I'd actually go for choice c)+++++++++++++++++++++++++++++++++++++This assumes that the roll is free to rotate.I think that a similar idea is behind the design and use of a "ballistic galvanometer". The charge is passed through the galvanometer quickly, as a current pulse. Then the needle starts to deflect, and the deflection is arranged to depend on the total charge that has passed through in the time of the current pulse.
3 0
3 years ago
A 50.0-g object connected to a spring with a force constant of 35.0 n/m oscillates with an amplitude of 4.00 cm on a frictionles
Dimas [21]
A) The total energy of the system is sum of kinetic energy and elastic potential energy:
E=K+U= \frac{1}{2}mv^2 +  \frac{1}{2}kx^2
where
m is the mass
v is the speed
k is the spring constant
x is the elongation/compression of the spring

The total energy is conserved, so we can calculate its value at any point of the motion. If we take the point of maximum displacement:
x=A=4.00 cm = 0.04 m
then the velocity of the system is zero, so the total energy is just potential energy, and it is equal to
E=U= \frac{1}{2}kA^2 =  \frac{1}{2}(35.0 N/m)(0.04 m)^2=0.028 J

b) When the position of the object is 
x=1.00 cm = 0.01 m
the potential energy of the system is
U= \frac{1}{2}kx^2 =  \frac{1}{2}(35.0 N/m)(0.01 m)^2 = 1.75 \cdot 10^{-3} J
and so the kinetic energy is
K=E-U=0.028 J - 1.75 \cdot 10^{-3}J =0.026 J
since the mass is m=50.0 g=0.05 kg, and the kinetic energy is given by
K= \frac{1}{2}mv^2
we can re-arrange the formula to find the speed of the object:
v= \sqrt{ \frac{2K}{m} }= \sqrt{ \frac{2 \cdot 0.026 J}{0.05 kg} }=1.02 m/s

c) The potential energy when the object is at 
x=3.00 cm=0.03 m
is
U= \frac{1}{2}kx^2 =  \frac{1}{2}(35.0 N/m)(0.03 m)^2 =0.016 J
Therefore the kinetic energy is
K=E-U=0.028 J-0.016 J = 0.012 J

d) We already found the potential energy at point c, and it is given by
U= \frac{1}{2}kx^2 = \frac{1}{2}(35.0 N/m)(0.03 m)^2 =0.016 J
5 0
4 years ago
Other questions:
  • Why is the gravitational potential energy of an object 1 meter
    12·1 answer
  • What is calculated by speed of light/wavelength?
    15·1 answer
  • If you see a lightning stroke and then, 15 seconds later, hear the thunder, the lightning is about ____ miles away
    13·1 answer
  • Which do you think will penetrate farther into a block of lead, x-rays, or gamma rays
    14·1 answer
  • Any clue on this one I know it’s not D
    14·2 answers
  • In a 4.0-kilometer race, a runner completes the first kilometer in 5.9 minutes, the second kilometer in 6.2 minutes, the third k
    9·1 answer
  • What happens to the gravitational potential energy between two particles if the distance between them is halved? (a) It does not
    13·1 answer
  • If the attacking team sends the ball out-of-bounds over a goal line, what is the next play?
    10·1 answer
  • A 165 N object is supported by three cables(T1, T2 and T3), of which T1 and T2 are making angles θ1 = 52o and θ2 = 39o as shown
    7·1 answer
  • cecily is inflating her bicyble tyre with the pump below. when she pushes the plunger down, it is moving against a force applief
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!