Answer:
2 m/s²
Explanation:
If changes speed by 2 meters per second each second means:
2 m/s²
Because it changes constantly it veloctity.
Remember the aceleration changes the velocity.
You are correct earth science is studied to predict planetery changes
You can't. Velocity and acceleration measure two different things, so their units are incompatible. It's like asking, "How many meters does this book weigh?"
Maybe you mean "find" acceleration using given velocities, or a velocity function?
The way I do it is suddenly, in the same sort of way that magicians try to pull a table cloth off a table when there's things on the table cloth.The sudden approach acts as an impulse of force and starts to accelerate the roll. But, the piece (assuming it has perforations) is off the roll before the roll can move, due to inertia. Then the roll will acclerate, move, slow down and stop. However, in accelerating, the roll will unravel. The bigger the impulse the more it will unravel.+++++++++++++++++++++++++++++++++++++++If on the other hand, the piece of paper is held firmly, and the roll is pulled, then the impulse is presumably given to the paper and the hand whose inertia is a lot more than that of the roll. So, I think I'd actually go for choice c)+++++++++++++++++++++++++++++++++++++This assumes that the roll is free to rotate.I think that a similar idea is behind the design and use of a "ballistic galvanometer". The charge is passed through the galvanometer quickly, as a current pulse. Then the needle starts to deflect, and the deflection is arranged to depend on the total charge that has passed through in the time of the current pulse.
A) The total energy of the system is sum of kinetic energy and elastic potential energy:

where
m is the mass
v is the speed
k is the spring constant
x is the elongation/compression of the spring
The total energy is conserved, so we can calculate its value at any point of the motion. If we take the point of maximum displacement:

then the velocity of the system is zero, so the total energy is just potential energy, and it is equal to

b) When the position of the object is

the potential energy of the system is

and so the kinetic energy is

since the mass is

, and the kinetic energy is given by

we can re-arrange the formula to find the speed of the object:

c) The potential energy when the object is at

is

Therefore the kinetic energy is

d) We already found the potential energy at point c, and it is given by