
<u>We </u><u>have</u><u>, </u>
- Line segment AB
- The coordinates of the midpoint of line segment AB is ( -8 , 8 )
- Coordinates of one of the end point of the line segment is (-2,20)
Let the coordinates of the end point of the line segment AB be ( x1 , y1 ) and (x2 , y2)
<u>Also</u><u>, </u>
Let the coordinates of midpoint of the line segment AB be ( x, y)
<u>We </u><u>know </u><u>that</u><u>, </u>
For finding the midpoints of line segment we use formula :-

<u>According </u><u>to </u><u>the </u><u>question</u><u>, </u>
- The coordinates of midpoint and one of the end point of line segment AB are ( -8,8) and (-2,-20) .
<u>For </u><u>x </u><u>coordinates </u><u>:</u><u>-</u>





<h3><u>Now</u><u>, </u></h3>
<u>For </u><u>y </u><u>coordinates </u><u>:</u><u>-</u>





Thus, The coordinates of another end points of line segment AB is ( -14 , 36)
Hence, Option A is correct answer
Answer:
Step-by-step explanation:
d = r * t
Let the time at 59 miles / hour be t
59*t + 57* (4.5 - t) = 259.5 Remove the brackets
59*t + 256.5 - 57*t = 259.5 Combine the left
2t + 256.5 = 259.5 Subtract 228 from both sides
2t = 259.5 - 256.5 Combine
2t = 3 Divide by 2
t = 1.5
So he spent 1.5 hours going at 59 miles per hour
He spent 4.5 - 1.5 = 3 hours going 57 miles per hour.
g(x) = x^3 − x^2 − 4x + 4
g(x) = x^3 + 2x^2 − 25x − 50
g(x) = 2x^3 + 14x^2 − 2x − 14
Answer:
23.3786
Step-by-step explanation:
tan33° = x÷36
x = tan33°×36
x = 23.3786