Its magnifying power is: 4X 5X 9X 20X. A 4-inch, f/5 telescope has a 1-inch eyepiece focal. Its magnifying power is 9x. This answer has been confirmed as correct and helpful.
Answer:
Explanation:
Problem 1
<u>1. Data</u>
<u />
a) P₁ = 3.25atm
b) V₁ = 755mL
c) P₂ = ?
d) V₂ = 1325 mL
r) T = 65ºC
<u>2. Formula</u>
Since the temeperature is constant you can use Boyle's law for idial gases:

<u>3. Solution</u>
Solve, substitute and compute:


Problem 2
<u>1. Data</u>
<u />
a) V₁ = 125 mL
b) P₁ = 548mmHg
c) P₁ = 625mmHg
d) V₂ = ?
<u>2. Formula</u>
You assume that the temperature does not change, and then can use Boyl'es law again.

<u>3. Solution</u>
This time, solve for V₂:

Substitute and compute:

You must round to 3 significant figures:

Problem 3
<u>1. Data</u>
<u />
a) V₁ = 285mL
b) T₁ = 25ºC
c) V₂ = ?
d) T₂ = 35ºC
<u>2. Formula</u>
At constant pressure, Charle's law states that volume and temperature are inversely related:

The temperatures must be in absolute scale.
<u />
<u>3. Solution</u>
a) Convert the temperatures to kelvins:
- T₁ = 25 + 273.15K = 298.15K
- T₂ = 35 + 273.15K = 308.15K
b) Substitute in the formula, solve for V₂, and compute:

You must round to two significant figures: 290 ml
Problem 4
<u>1. Data</u>
<u />
a) P = 865mmHg
b) Convert to atm
<u>2. Formula</u>
You must use a conversion factor.
Divide both sides by 760 mmHg

<u />
<u>3. Solution</u>
Multiply 865 mmHg by the conversion factor:

Answer:
g NaCl = 424.623 g
Explanation:
<em>C</em> NaCl = 3.140 m = 3.140 mol NaCl / Kg solvent
∴ solvent: H2O
∴ mass H2O = 2.314 Kg
mol NaCl:
⇒ mol NaCl = (3.140 mol NaCl/Kg H2O)×(2.314 Kg H2O) = 7.266 mol NaCl
∴ mm NaCl = 58.44 g/mol
⇒ g NaCl = (7.266 mol NaCl)×(58.44 g/mol) = 424.623 g NaCl
Most clouds are white. That's because water and ice particles that make up a cloud have just the right amount and sizes to scatter light in all possible wavelengths. When light of practically all wavelengths combine, the result is white light.
Explanation:
When the forces acting on an object are balanced , there is no change in the object's motion.
A force acting on a resting object can cause the object to move.
On Earth, gravity pulls all objects toward the ground.
When a force acts in the opposite direction of another force, the forces counteract each other.
More than one force acting on a falling object can reduce its downward acceleration
Air resistance is caused by molecules of air pushing against a moving object