Answer:
hydrofluoric acid HF H+ + F- 7.2 × 10-4
Answer is: <span>Mutations sometimes improve the chances of survival for a plant.
</span>Mutations are very important because they change <span>variability in populations and in that way enable evolutionary change.
</span>There are three types of mutations:
1) good or advantageous mutations - <span> improve the chances of survival for a plant.
2) </span>bad or deleterious - decrease the chances of survival for a plant.
3) neutral - not affect he chances of survival for a plant.
Answer:
1. A. True
2. A. True
3. B. False
4. A. True
5. B. False
Explanation:
1. The particles are in constant motion. The collisions of the particles with the walls of the container are the cause of the pressure exerted by the gas. A. True. The pressure of an ideal gas is higher than the one that would exert a real gas.
2. The particles are assumed to exert no forces on each other; they are assumed neither to attract nor to repel each other. A. True. The intermolecular forces are negligible.
3. The particles are so small compared with the distances between them that the volume of the individual particles can be assumed to be about 1 mL. B. False. The volume of the gas particles is negligible.
4. The molecules in a real gas have finite volumes and do exert forces on each other, thus real gases do not conform to some of the assumptions of an ideal gas as stated by the kinetic molecular theory. A. True. We cannot apply ideal gas laws to real gases.
5. The average kinetic energy of a collection of gas particles is assumed to be inversely proportional to the Kelvin temperature of the gas. B. False. The average kinetic energy of a collection of gas particles is assumed to be directly proportional to the Kelvin temperature of the gas.
Answer:
Option B. A
Explanation:
From the question given above, the following data were obtained:
C(s) + 2H₂ (g) —> CH₄ (g). ΔH = –74.9 kJ
From the reaction above, we can see that the enthalpy change (ΔH) is negative (i.e –74.9 KJ) which implies that the heat content of the reactants is greater than the heat content of the products. Thus, the reaction is exothermic reaction.
For an exothermic reaction, the energy profile diagram is drawn in such a way that the heat content of reactants is higher than the heat content of products because the enthalpy change
(ΔH) is always negative.
Thus, diagram A (i.e option B) gives the correct answer to the question.
Density = mass /volume of the body. mass = 10.88 g, volume of the liquid displaced= 49.4-43.5=5.9 ml.
density = 10.88/5.9=1.844 g/ml~1.84 g/ml
The volume displaced is exactly the same as that of the body (The Eureka fro Archimedes!)