<span>The density of the solution =1.05 g/ml.
</span><span>The total mass of the resulting solution is = 398.7 g (CaCl2 + water)
</span>
Find moles of CaCl2 and water.
Molar mass of CaCl2 = 110 (approx.)
Moles of CaCl2 = 23.7 / 110 = 0.22
so, moles of Cl- ion = 2 x 0.22 = 0.44 (because each molecule of CaCl2 will give two Cl- ions)
Moles of water = 375 / 18 = 20.83
Now, Mole fraction of CaCl2 = (moles of CaCl2) / (total moles)
total moles = moles of Cl- ions + moles of Ca2+ ions + moles of water
= 0.44 + 0.22 + 20.83
=21.49
So, mole fraction = 0.44 / (21.49) = 0.02
Guess what !!! density is not used. No need
B protons are positive atoms and are inside the nucleus
<span>using the law pv=nrT and equating these you get the equation v1/t1 = v2/t2 since pressure is constant it also cancels with n and r. show that v1=36.4, t1 = 25 + 273.15 and t2 = 88 +273.15. 273.15 is the Kelvin conversion. then solve for v2. This is 44.1 L.</span>
The equation is H2SO4 + 2NaOH = 2H2O + Na2SO4, Also, what is the theoretical yield of Na2SO4 in grams?