The <span>hardy-weinberg equation is
p2 + 2pq + q2 = 1
where are already given with
c = 0.1 and C = 0.9
SO
p2 = 0.9^2
p2 = 0.81
q2 = 0.01
0.81 + 2pq - 0.01 = 1
2pq = 0.18
The answers are
CC = 0.81
cc = 0.01
Cc = 0.18</span><span />
Waves deposit fine sediments from weathered coastal rocks on the shore.
Answer:
Rate of product formation is linear and [S] has not been lowered significantly.
Explanation:
The rate of enzyme-catalyzed reactions is affected by several factors, the contraction of substrates [S] is one of them. The substrate concentration keeps on changing as the reaction proceeds. This is why the reaction rate is measured at the initial stages of reactions when the substrate concentration [S] is much greater than the concentration of the enzyme. It is called the initial rate or initial velocity.
Under the conditions of higher substrate concentration and relatively much lower enzyme concentrations, only a few molecules of substrates are being converted into product. At a relatively higher substrate concentration, the rate of product formation increases linearly.
Explanation:
The Big Bang Theory is the leading explanation about how the universe began. At its simplest, it says the universe as we know it started with a small singularity, then inflated over the next 13.8 billion years to the cosmos that we know today
Answer:
The changes in the sequence of nucleotides present within a promoter is a prime cause of the defected transcriptional regulation, which may eventually result in disease. However, not every modification within the sequence of a promoter influences the regulation of transcription, it relies upon the nature and the location of the genetic defect.
When a mutation results within the sequence of a promoter region it may hamper the usual procedures of gene stimulation by affecting the step by step alignment of the transcription factors at the promoter region. Therefore, as a consequence, a mutation within the sequence of a promoter may result in the enhancement or reduction in the level of mRNA and thus protein.