Answer:
The answer is B, your welcome
Hey,
Fractions can be decomposed in many different ways. Decomposing a fraction means breaking it up into smaller parts.
For example you can write 3/5 as 1/5+1/5+1/5 or as 1/5+2/5.
It's a summation (sigma) notation.

This expression means the sum of all the terms
, where <em>i</em> takes the values from 1 to <em>n</em>.
So <em>i</em> is the index (like a counter) and <em>n</em> is the last value.
In this case:

If you know your derivative rules, then
d/d<em>x</em> [1/<em>x</em>] = -1/<em>x</em> ²
so that when <em>x</em> = 6, the derivative has a value of -1/36.
If you have to use the definition of the derivative, then
d/d<em>x</em> [1/<em>x</em>] = lim {<em>h</em> → 0} (1/(<em>x</em> + <em>h</em>) - 1/<em>x</em>) / <em>h</em>
… = lim {<em>h</em> → 0} (<em>x</em> - (<em>x</em> + <em>h</em>)) / (<em>hx</em> (<em>x</em> + <em>h</em>))
… = lim {<em>h</em> → 0} (-<em>h</em>) / (<em>hx</em> (<em>x</em> + <em>h</em>))
… = lim {<em>h</em> → 0} (-1) / (<em>x</em> (<em>x</em> + <em>h</em>))
… = -1/<em>x</em> ²
and at <em>x</em> = 6, you again get -1/36.
Alternatively, use the definition of the derivative at a point:
d/d<em>x</em> [1/<em>x</em>] (6) = lim {<em>x</em> → 6} (1/<em>x</em> - 1/6) / (<em>x</em> - 6)
… = lim {<em>x</em> → 6} ((6 - <em>x</em>) / (6<em>x</em>)) / (<em>x</em> - 6)
… = lim {<em>x</em> → 6} -(<em>x</em> - 6) / (6<em>x</em> (<em>x</em> - 6))
… = lim {<em>x</em> → 6} (-1) / (6<em>x</em>)
… = -1/36
Answer:
=12x−9
Step-by-step explanation:
−3x+ −9 +15x
=(−3x+15x) +(−9)
=12x+−9
I hope this helps ^^