1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Norma-Jean [14]
2 years ago
12

How are the oscillating magnetic and electric fields of an electromagnetic wave positioned relative to each other?​

Physics
1 answer:
Pepsi [2]2 years ago
7 0

Answer:

Electromagnetic waves consist of both electric and magnetic field waves. These waves oscillate in perpendicular planes with respect to each other, and are in phase. The creation of all electromagnetic waves begins with an oscillating charged particle, which creates oscillating electric and magnetic fields.

Explanation:

You might be interested in
Plz help a smol bean out (no links btw)
Marina86 [1]
Hey! If this is on big ideas get a app called “Slader” It has answers to all math problems just like up the book you use > save it > type in the section you are doing > and look for the problems you are doing.
8 0
3 years ago
Boyle's law says that the volume of a gas varies inversely with the pressure. When the volume of a certain gas is 4l , the press
Anna11 [10]

Boyle's law says that the volume of a gas varies inversely with the pressure. When the volume of a certain gas is 4l , the pressure is 720 kpa (kilopascals). What is the pressure when the volume is 10l ?

7 0
3 years ago
A gas has a volume of 6 L, a temperature of 70 degrees C, and a pressure of 2 atm. If the gas is compressed to a volume of 4 L,
Lelu [443]
I would say check the back of the book
4 0
3 years ago
A 100-W (watt) light bulb has resistance R=143Ω (ohms) when attached to household current, where voltage varies as V=V0sin(2πft)
Phantasy [73]

Complete Question

A 100-W (watt) light bulb has resistance R=143Ω (ohms) when attached to household current, where voltage varies as V=V0sin(2πft), where V0=110 V, f=60 Hz. The power supplied to the bulb is P=V2R J/s (joules per second) and the total energy expended over a time period [0,T] (in seconds) is U  =  \int\limits^T_0 {P(t)} \, dt

Compute U if the bulb remains on for 5h

Answer:

The value is  U  =  7.563 *10^{5} \  J

Explanation:

From the question we are told that

   The power rating of the bulb is P  =  100 \  W

   The resistance is   R =  143 \ \Omega

   The  voltage is  V  =  V_o  sin [2 \pi ft]

   The  energy expanded is U  =  \int\limits^T_0 {P(t)} \, dt

   The  voltage  V_o  =  110 \  V

   The frequency is  f =  60 \  Hz

    The  time considered is  t =  5 \  h  =  18000 \  s

Generally power is mathematically represented as

             P =  \frac{V^2}{ R}

=>          P =  \frac{( 110  sin [2 \pi * 60t])^2}{ 144}

=>           P =  \frac{ 110^2 [ sin [120 \pi t])^2}{ 144}

So  

     U  =  \int\limits^T_0 { \frac{ 110^2*  [sin [120 \pi t])^2}{ 144}} \, dt

=>  U  =  \frac{110^2}{144} \int\limits^T_0 { (   sin^2 [120 \pi t]} \, dt

=>  U =  \frac{110^2}{144} \int\limits^T_0 { \frac{1 - cos 2 (120\pi t)}{2} } \, dt

=>  U =  \frac{110^2}{144} \int\limits^T_0 { \frac{1 - cos 240 \pi t)}{2} } \, dt

=>  U =  \frac{110^2}{144} [\frac{t}{2}  - [\frac{1}{2} *  \frac{sin(240 \pi t)}{240 \pi} ] ]\left  | T} \atop {0}} \right.

=>  U =  \frac{110^2}{144} [\frac{t}{2}  - [\frac{1}{2} *  \frac{sin(240 \pi t)}{240 \pi} ] ]\left  | 18000} \atop {0}} \right.

U =  \frac{110^2}{144} [\frac{18000}{2}  - [\frac{1}{2} *  \frac{sin(240 \pi (18000))}{240 \pi} ] ]

=>   U  =  7.563 *10^{5} \  J

7 0
3 years ago
8. Fig. 4.1 shows a heavy ball B of weight W suspended from a fixed beam by two ropes P and Q.
mart [117]

Answer:

The resultant tension of the two ropes is approximately 42.4 N

The length of the line representing the resultant tension is approximately 8.48 cm

Please find included  with the answer the scale drawing created with Microsoft Word

Explanation:

The given parameters are;

The tension in rope P, T_P = 30 N

The tension in rope Q, T_Q = 30 N

The angle the rope, 'P', makes with the horizontal = 45°

The angle the rope, 'Q', makes with the horizontal = 45°

The scale factor of the scale diagram, S.F. = 5.0 N/cm

By the resolution of forces at equilibrium, we have;

The sum of the vertical forces, \Sigma F_y = T_P_y + T_Q_y + W = 0

∴ W = -(T_P_y + T_Q_y)

W = -(30 × sin(45°) + 30 × sin(45°)) = -42.4264068712

The weight of the heavy ball, W ≈ 42.4 N acting downwards

The sum of the horizontal forces, \Sigma F_x = T_P_x + T_Q_x  = 0

The length of the resultant force, W = W/(S.F.) ≈ 42.4 N/(5.0 N/cm) = 8.48 cm

The drawing of the vectors using the scale factor of 5.0 N/cm is created using Microsoft Word is included

3 0
3 years ago
Other questions:
  • How can light change matter
    6·1 answer
  • What are similarities and differences between refraction, reflection, diffraction and absorption?
    15·1 answer
  • A car moves at a constant velocity of 30 m/s and has 3.6 × 105 J of kinetic energy. The driver applies the brakes and the car st
    14·1 answer
  • Your teacher has given each lab group four liquids. Each liquid has been tinted using food coloring. Your teacher has asked you
    10·2 answers
  • During a tennis match, a player serves the ball at a speed s, with the center of the ball leaving the racquet at angle θ below t
    15·1 answer
  • How does a compass needle respond when a compass is placed within a magnetic field? It aligns in a direction parallel to the fie
    11·2 answers
  • The current through each resistor in the two-resistor circuit is _________ the current through the resistor in the one-resistor
    15·1 answer
  • Which of the following is a force or motion that
    6·1 answer
  • How does wheel and axel work​
    10·2 answers
  • 9. Which of the following is NOT a recommendation to help you succeed in this course?
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!