Answer:
See figure 1
Explanation:
In this question, we have to start with the <u>protonation of the double bond</u>. In carvone we have two double bonds, so, we have to decide first which one would be protonated.
The problem states that the <u>terminal alkene</u> is the one that would is protonated. Therefore, we have to do the <u>protonation</u> in the double bond at the bottom to produce the <u>carbocation number 1</u>. Then, a hydride shift takes place to produce the <u>carbocation number 2</u>. A continuation, an <u>elimination reaction</u> takes place to produce the <u>conjugated diene</u>. Then the diene is protonated at the <u>carbonyl group</u> and with an elimination reaction of an hydrogen in the <u>alpha carbon</u> we can obtain <u>carvacol. </u>
Lead can cause
D.) brain damage
Explanation:
Lead poisoning is a sort of metal poisoning generated by lead in the body. The brain is the most sensitive. Symptoms may comprise abdominal pain, illness, headaches, irritability, thought problems, inability to have children, and tingling in the hands and feet. It causes almost 10% of the intelligent weakness of otherwise unknown cause also can result in behavioral problems. Some of the outcomes are strong. In severe cases, anemia, convulsions, coma, or death may occur.
The new pressure, P₂ is 6000 atm.
<h3>Calculation:</h3>
Given,
P₁ = 1.5 atm
V₁ = 40 L = 40,000 mL
V₂ = 10 mL
To calculate,
P₂ =?
Boyle's law is applied here.
According to Boyle's law, at constant temperature, a gas's volume changes inversely with applied pressure.
PV = constant
Therefore,
P₁V₁ = P₂V₂
Put the above values in the equation,
1.5 × 40,000 = P₂ × 10
P₂ = 1.5 × 4000
P₂ = 6000 atm
Therefore, the new pressure, P₂ is 6000 atm.
Learn more about Boyle's law here:
brainly.com/question/23715689
#SPJ4
D.
This is self-regulation because when the population of the insects becomes too large, it regulates itself and starts to decrease due to a shortage of resources.
To answer this problem, we must make assumptions for simplicity. The first assumption is that, the system only consist of these 3 gases. The second assumption is that, these gases behave ideally. Thus, from Dalton's Law of Partial Pressure, the total pressure is simply the sum of their individual partial pressures.
Total pressure = 2.5 + 0.8 + 3.4 = <em>6.7 atm</em>