Answer:
d) cut the large sized Cu solid into smaller sized pieces
Explanation:
The aim of the question is to select the right condition for that would increases the rate of the reaction.
a) use a large sized piece of the solid Cu
This option is wrong. Reducing the surface area decreases the reaction rate.
b) lower the initial temperature below 25 °C for the liquid reactant, HNO3
Hugher temperatures leads to faster reactions hence this option is wrong.
c) use a 0.5 M HNO3 instead of 2.0 M HNO3
Higher concentration leads to increased rate of reaction. Hence this option is wrong.
d) cut the large sized Cu solid into smaller sized pieces
This leads to an increased surface area of the reactants, which leads to an increased rate of the reaction. This is the correct option.
Answer:
HF
Explanation:
Hf has hydrogen bonding which is the strongest intermolecular forces. The stronger the IM forces, the higher the boiling point.
Answer: 12.78ml
Explanation:
Given that:
Volume of KOH Vb = ?
Concentration of KOH Cb = 0.149 m
Volume of HBr Va = 17.0 ml
Concentration of HBr Ca = 0.112 m
The equation is as follows
HBr(aq) + KOH(aq) --> KBr(aq) + H2O(l)
and the mole ratio of HBr to KOH is 1:1 (Na, Number of moles of HBr is 1; while Nb, number of moles of KOH is 1)
Then, to get the volume of a 0.149 m potassium hydroxide solution Vb, apply the formula (Ca x Va)/(Cb x Vb) = Na/Nb
(0.112 x 17.0)/(0.149 x Vb) = 1/1
(1.904)/(0.149Vb) = 1/1
cross multiply
1.904 x 1 = 0.149Vb x 1
1.904 = 0.149Vb
divide both sides by 0.149
1.904/0.149 = 0.149Vb/0.149
12.78ml = Vb
Thus, 12.78 ml of potassium hydroxide solution is required.
Mole ratio for the reaction is 1:1
no of moles in NaOH that reacted= 1*21.17/1000=0.02117mols
molarity of HCl=0.02117*10/1000
=2.117M
Answer:
ALA.American Institute of Architects
SAG.Screen Actor Guild
AFP.Association For Finance Professional
AMA.American Medical Association