Calculate first the number of moles of ethylene glycol by dividing the mass by the molar mass.
n = (6.21 g ethylene glycol) / 62.1 g/mol
n = 0.1 mol
Then, calculate the molality by dividing the number of moles by the mass of water (in kg).
m = 0.1 mol/ (0.025 kg) = 4m
Then, use the equation,
Tb,f = Tb,i + (kb)(m)
Substituting the known values,
Tb,f = 100°C + (0.512°C.kg/mol)(4 mol/kg)
<em>Tb,f = 102.048°C</em>
Answer:
The answer is 98.07848. We assume you are converting between grams H2SO4 and mole. You can view more details on each measurement unit: This compound is also known as Sulfuric Acid. The SI base unit for amount of substance is the mole. 1 grams H2SO4 is equal to 0.010195916576195 mole.
<u>Quick conversion chart of moles H2SO3 to grams</u>
1 moles H2SO3 to grams = 82.07908 grams
2 moles H2SO3 to grams = 164.15816 grams
3 moles H2SO3 to grams = 246.23724 grams
4 moles H2SO3 to grams = 328.31632 grams
5 moles H2SO3 to grams = 410.3954 grams
6 moles H2SO3 to grams = 492.47448 grams
7 moles H2SO3 to grams = 574.55356 grams
8 moles H2SO3 to grams = 656.63264 grams
9 moles H2SO3 to grams = 738.71172 grams
10 moles H2SO3 to grams = 820.7908 grams
Answer:
The answer to your question is V = 0.108 L or 108 ml
Explanation:
Data
Volume = ?
mass = 0.405 g
Temperature = 273°K
Pressure = 1 atm
Process
1.- Convert mass of Kr to moles
83.8 g of Kr -------------------- 1 mol
0.405 g ------------------- x
x = (0.405 x 1) / 83.8
x = 0.0048 moles
2.- Use the Ideal gas law to solve this problem
PV = nRT
- Solve for V
V = nRT / P
- Substitution
V = (0.0048)(0.082)(273) / 1
- Simplification
V = 0.108 / 1
- Result
V = 0.108 L
Answer:
the answer is C) sharing
Explanation:
positive ions & negative ions form when atom s lose or gain electrons. Covalent bonds form when atoms share electrons.Metallic bonds form by the attraction of metal ions and the electrons around them. Covalent compounds form when atoms of elements share electrons.
Answer:
the process by which substances in their gaseous state are converted to the liquid state.
Explanation:
When pressure on a gas is increased, its molecules closer together, and its temperature is reduced, which removes enough energy to make it change from the gaseous to the liquid state.